Mehta Shalin B, McQuilken Molly, La Riviere Patrick J, Occhipinti Patricia, Verma Amitabh, Oldenbourg Rudolf, Gladfelter Amy S, Tani Tomomi
Eugene Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, Woods Hole, MA 02543.
Department of Biological Sciences, Dartmouth College, Hanover, NH 03755; Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599.
Proc Natl Acad Sci U S A. 2016 Oct 18;113(42):E6352-E6361. doi: 10.1073/pnas.1607674113. Epub 2016 Sep 27.
Regulation of order, such as orientation and conformation, drives the function of most molecular assemblies in living cells but remains difficult to measure accurately through space and time. We built an instantaneous fluorescence polarization microscope, which simultaneously images position and orientation of fluorophores in living cells with single-molecule sensitivity and a time resolution of 100 ms. We developed image acquisition and analysis methods to track single particles that interact with higher-order assemblies of molecules. We tracked the fluctuations in position and orientation of molecules from the level of an ensemble of fluorophores down to single fluorophores. We tested our system in vitro using fluorescently labeled DNA and F-actin, in which the ensemble orientation of polarized fluorescence is known. We then tracked the orientation of sparsely labeled F-actin network at the leading edge of migrating human keratinocytes, revealing the anisotropic distribution of actin filaments relative to the local retrograde flow of the F-actin network. Additionally, we analyzed the position and orientation of septin-GFP molecules incorporated in septin bundles in growing hyphae of a filamentous fungus. Our data indicate that septin-GFP molecules undergo positional fluctuations within ∼350 nm of the binding site and angular fluctuations within ∼30° of the central orientation of the bundle. By reporting position and orientation of molecules while they form dynamic higher-order structures, our approach can provide insights into how micrometer-scale ordered assemblies emerge from nanoscale molecules in living cells.
诸如取向和构象等秩序的调控驱动着活细胞中大多数分子组装体的功能,但要在空间和时间上准确测量仍然很困难。我们构建了一台瞬时荧光偏振显微镜,它能够以单分子灵敏度和100毫秒的时间分辨率同时成像活细胞中荧光团的位置和取向。我们开发了图像采集和分析方法来追踪与分子高阶组装体相互作用的单个粒子。我们从荧光团集合水平追踪到单个荧光团,监测分子在位置和取向上的波动。我们使用荧光标记的DNA和F-肌动蛋白在体外测试了我们的系统,其中偏振荧光的集合取向是已知的。然后,我们追踪了迁移的人类角质形成细胞前沿稀疏标记的F-肌动蛋白网络的取向,揭示了肌动蛋白丝相对于F-肌动蛋白网络局部逆行流的各向异性分布。此外,我们分析了丝状真菌生长菌丝中并入septin束的septin-GFP分子的位置和取向。我们的数据表明,septin-GFP分子在结合位点约350纳米范围内经历位置波动,在束中心取向约30°范围内经历角度波动。通过在分子形成动态高阶结构时报告其位置和取向,我们的方法可以深入了解活细胞中微米级有序组装体是如何从纳米级分子中形成的。