Lu Hongtao, He Zhenya
Department of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai 200030, People's Republic of China.
Neural Netw. 2005 Apr;18(3):243-50. doi: 10.1016/j.neunet.2004.11.009. Epub 2005 Apr 22.
A competitive neural network model was recently proposed to describe the dynamics of cortical maps, where there are two types of memories: long-term and short-term memories. Such a network is characterized by a system of differential equations with two types of variables, one models the fast neural activity and the other models the slow modification of synaptic strength. In this paper, we introduce a time delay parameter into the neural network model to characterize the signal transmission delays in real neural systems and the finite switch speed in the circuit implementations of neural networks. Then, we analyze the global exponential stability of the delayed competitive neural networks with different time scales. We allow the model has non-differentiable and unbounded functions, and use the nonsmooth analysis techniques to prove the existence and uniqueness of the equilibrium, and derive a new sufficient condition ensuring global exponential stability of the networks.
最近提出了一种竞争神经网络模型来描述皮层地图的动力学,其中存在两种类型的记忆:长期记忆和短期记忆。这样的网络由一个具有两种类型变量的微分方程系统来表征,一种变量对快速神经活动进行建模,另一种变量对突触强度的缓慢变化进行建模。在本文中,我们将一个时间延迟参数引入神经网络模型,以表征真实神经系统中的信号传输延迟以及神经网络电路实现中的有限开关速度。然后,我们分析具有不同时间尺度的延迟竞争神经网络的全局指数稳定性。我们允许模型具有不可微和无界函数,并使用非光滑分析技术来证明平衡点的存在性和唯一性,并推导出确保网络全局指数稳定性的一个新的充分条件。