Zhang Jiye, Suda Yoshihiro, Iwasa Takashi
National Traction Power Laboratory, Southwest Jiaotong University, Chengdu, China.
Neural Netw. 2004 Apr;17(3):391-7. doi: 10.1016/j.neunet.2003.09.005.
In this paper, the existence and uniqueness of the equilibrium point and absolute stability of a class of neural networks with partially Lipschitz continuous activation functions are investigated. The neural networks contain both variable and unbounded delays. Using the matrix property, a necessary and sufficient condition for the existence and uniqueness of the equilibrium point of the neural networks is obtained. By constructing proper vector Liapunov functions and nonlinear integro-differential inequalities involving both variable delays and unbounded delay, using M-matrix theory, sufficient conditions for absolutely exponential stability are obtained.
本文研究了一类具有部分Lipschitz连续激活函数的神经网络平衡点的存在唯一性及绝对稳定性。该神经网络同时包含变时滞和无界时滞。利用矩阵性质,得到了神经网络平衡点存在唯一性的充要条件。通过构造适当的向量李雅普诺夫函数以及涉及变时滞和无界时滞的非线性积分微分不等式,运用M矩阵理论,得到了绝对指数稳定性的充分条件。