Castella Manuel, Buckberg Gerald D, Saleh Saleh, Gharib Morteza
Department of Surgery, Division of Cardiothoracic Surgery, University of California, Los Angeles, David Geffen School of Medicine, 62-258 Center for the Health Sciences, Los Angeles, CA 90095-1701, USA.
Eur J Cardiothorac Surg. 2005 Jun;27(6):980-7. doi: 10.1016/j.ejcts.2005.01.051.
To mechanically test the intact cardiac structure to determine the sequence of contraction within the myocardial mass to try to explain ejection and suction.
In 24 pigs (30-85 kg), segment shortening at the site of sonomicrometer crystals was continuously recorded. The ECG evaluated rhythm, and Millar pressure transducers measured intraventricular pressure and dP/dt.
Study of segment shortening defined a sequence of contraction within the myocardial mass, starting at the free wall of the right ventricle and on the endocardial side of the antero-septal wall of the left. Crystal location defined underlying contractile trajectory; transverse in right ventricle followed by basal posterior left ventricle, and from the endocardial anterior wall to the posterior apical segment and finally to the epicardial side of the anterior wall. Mean shortening fraction averaged 18+/-3%, with endocardial exceeding epicardial shortening by 5+/-1%. Epicardial segment crystal displacement followed endocardial shortening by 82+/-23 ms in the anterior wall, and finished 92+/-33 ms after endocardial shortening stopped, time frame that matches the interval of fast drop of ventricular pressure and the start of suction.
Crystal shortening fraction sequence followed the rope-like myocardial band model to contradict traditional thinking, with two starting points of excitation-contraction, the right anterior free wall of the right ventricle, and the endocardial side of the anterior wall. Active suction may be due to active shortening of the epicardial fibers of the anterior wall, because relaxation was not detected when both mitral and aortic valves were closed during the interval previously termed 'isovolumetric relaxation'.
对完整的心脏结构进行力学测试,以确定心肌团块内的收缩顺序,试图解释射血和抽吸过程。
在24头猪(30 - 85千克)身上,连续记录声振微测晶体部位的节段缩短情况。心电图评估心律,米勒压力传感器测量心室内压力和dP/dt。
对节段缩短的研究确定了心肌团块内的收缩顺序,始于右心室游离壁和左心室前间隔壁的心内膜侧。晶体位置确定了潜在的收缩轨迹;右心室内为横向,随后是左心室基底后壁,从心内膜前壁到心尖后段,最后到前壁的心外膜侧。平均缩短分数平均为18±3%,心内膜缩短超过心外膜缩短5±1%。前壁心外膜节段晶体位移在心内膜缩短后82±23毫秒出现,并在心内膜缩短停止后92±33毫秒结束,该时间框架与心室压力快速下降和抽吸开始的间隔相匹配。
晶体缩短分数顺序遵循绳状心肌带模型,与传统观念相悖,有两个兴奋 - 收缩起始点,即右心室右前游离壁和前壁的心内膜侧。主动抽吸可能是由于前壁心外膜纤维的主动缩短,因为在先前称为“等容舒张期”的间隔内,当二尖瓣和主动脉瓣均关闭时未检测到舒张。