Furstenberg Robert, White Jeffrey O
Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.
Appl Spectrosc. 2005 Mar;59(3):316-21. doi: 10.1366/0003702053585345.
A method for the phase correction of interferograms in Fourier transform infrared spectroscopy is presented. It is shown that phase error can be canceled to within an arbitrary angular precision by a low-order digital all-pass filter. Such a filter only modifies the phase of the Fourier transform of the interferogram and keeps the magnitude unchanged, like the Mertz method, for example. However, our method minimizes the asymmetric apodization that results in photometric errors when using the Mertz method alone. A practical example is provided in which phase correction over a frequency range of 800 cm(-1) to 4000 cm(-1) using a 9-pole all-pass filter resulted in a photometric error of <0.01%, much less than the 0.3% error of the Mertz method. An alternative and faster (approximately 100 ms) approach is to use an all-pass filter with lower angular precision followed by the Mertz method. Removing most of the phase error with the filter brings the interferogram to an optimal state so that the residual phase error can be completely removed with the Mertz procedure without introducing photometric error. The method can be used in most experiments, including emission spectroscopy, where conventional techniques are inadequate. A simple all-pass filter design algorithm is given.
本文提出了一种傅里叶变换红外光谱中干涉图相位校正的方法。结果表明,通过低阶数字全通滤波器可将相位误差消除到任意角度精度范围内。例如,与默茨方法一样,这种滤波器仅修改干涉图傅里叶变换的相位,而保持幅度不变。然而,我们的方法将单独使用默茨方法时导致光度误差的不对称变迹最小化。给出了一个实际例子,其中使用9阶全通滤波器在800 cm⁻¹至4000 cm⁻¹频率范围内进行相位校正,导致光度误差<0.01%,远小于默茨方法的0.3%误差。另一种更快(约100毫秒)的方法是先使用角度精度较低的全通滤波器,然后再使用默茨方法。用滤波器消除大部分相位误差可使干涉图达到最佳状态,从而可通过默茨程序完全消除残余相位误差,而不会引入光度误差。该方法可用于大多数实验,包括传统技术不适用的发射光谱实验。给出了一种简单的全通滤波器设计算法。