Suppr超能文献

谷氨酸棒杆菌中甲硫氨酸输出的特性分析。

Characterization of methionine export in Corynebacterium glutamicum.

作者信息

Trötschel Christian, Deutenberg Dietrich, Bathe Brigitte, Burkovski Andreas, Krämer Reinhard

机构信息

Institut für Biochemie, Universität zu Köln, Zülpicher Str. 47, 50674 Köln, Germany.

出版信息

J Bacteriol. 2005 Jun;187(11):3786-94. doi: 10.1128/JB.187.11.3786-3794.2005.

Abstract

Corynebacterium glutamicum is known for its effective excretion of amino acids under particular metabolic conditions. Concomitant activities of uptake and excretion systems would create an energy-wasting futile cycle; amino acid export systems are therefore tightly regulated. We have used a DNA microarray approach to identify genes for membrane proteins which are overexpressed under conditions of elevated cytoplasmic concentrations of methionine. One of these genes was brnF, coding for the larger subunit of BrnFE, a previously identified two-component isoleucine export system. By deletion, complementation, and overexpression of the brnFE genes in a C. glutamicum strain, in which the two uptake systems for methionine were inactivated, we identified BrnFE as being responsible for methionine export. In the presence of both substrates in the cytoplasm, BrnFE was found to transport isoleucine and methionine at similar rates. The expression of the brnFE gene cluster depends on an Lrp-type transcription factor and was shown to be strongly induced by increasing cytoplasmic methionine concentration. Methionine was a better inducer than isoleucine, indicating that methionine rather than isoleucine might be the native substrate of BrnFE. When the synthesis of BrnFE was blocked by chloramphenicol, fast methionine export was still observed, but only at greatly increased cytoplasmic levels of this amino acid. This indicates the presence of at least one other methionine export system, presumably with low affinity but high capacity. Under conditions where cytoplasmic methionine does not exceed a concentration of 50 mM, BrnFE is the dominant export system for this amino acid.

摘要

谷氨酸棒杆菌以其在特定代谢条件下有效分泌氨基酸而闻名。摄取和排泄系统的同时活动会形成一个浪费能量的无效循环;因此,氨基酸输出系统受到严格调控。我们使用DNA微阵列方法来鉴定在细胞质中甲硫氨酸浓度升高的条件下过表达的膜蛋白基因。其中一个基因是brnF,它编码BrnFE的较大亚基,BrnFE是先前鉴定的双组分异亮氨酸输出系统。通过在一个甲硫氨酸的两个摄取系统失活的谷氨酸棒杆菌菌株中对brnFE基因进行缺失、互补和过表达,我们确定BrnFE负责甲硫氨酸的输出。在细胞质中同时存在两种底物的情况下,发现BrnFE以相似的速率转运异亮氨酸和甲硫氨酸。brnFE基因簇的表达依赖于一种Lrp型转录因子,并且已证明随着细胞质中甲硫氨酸浓度的增加而被强烈诱导。甲硫氨酸比异亮氨酸是更好的诱导剂,这表明甲硫氨酸而非异亮氨酸可能是BrnFE的天然底物。当BrnFE的合成被氯霉素阻断时,仍然观察到快速的甲硫氨酸输出,但仅在该氨基酸的细胞质水平大大增加时才会出现。这表明至少存在另一种甲硫氨酸输出系统,推测其亲和力低但容量高。在细胞质中甲硫氨酸浓度不超过50 mM的条件下,BrnFE是该氨基酸的主要输出系统。

相似文献

引用本文的文献

7
Microbial methionine transporters and biotechnological applications.微生物蛋氨酸转运蛋白及其生物技术应用。
Appl Microbiol Biotechnol. 2021 May;105(10):3919-3929. doi: 10.1007/s00253-021-11307-w. Epub 2021 Apr 30.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验