Currie Richard A, Bombail Vincent, Oliver Jason D, Moore David J, Lim Fei Ling, Gwilliam Victoria, Kimber Ian, Chipman Kevin, Moggs Jonathan G, Orphanides George
Syngenta Central Toxicology Laboratory, Alderley Park, Cheshire SK10 4TJ, United Kingdom.
Toxicol Sci. 2005 Aug;86(2):453-69. doi: 10.1093/toxsci/kfi207. Epub 2005 May 18.
Toxicogenomics has the potential to reveal the molecular pathways and cellular processes that mediate the adverse responses to a toxicant. However, the initial output of a toxicogenomic experiment often consists of large lists of genes whose expression is altered after toxicant exposure. To interpret gene expression changes in the context of underlying biological pathways and processes, new bioinformatics methods must be developed. We have used global gene expression profiling combined with an evaluation of Gene Ontology (GO) and pathway mapping tools as unbiased methods for identifying the molecular pathways and processes affected upon toxicant exposure. We chose to use the acute effects caused by the non-genotoxic carcinogen and peroxisome proliferator (PP) diethylhexylphthalate (DEHP) in the mouse liver as a model system. Consistent with what is known about the mode of action of DEHP, our GO analysis of transcript profiling data revealed a striking overrepresentation of genes associated with the peroxisomal cellular component, together with genes involved in carboxylic acid and lipid metabolism. Furthermore we reveal gene expression changes associated with additional biological functions, including complement activation, hemostasis, the endoplasmic reticulum overload response, and circadian rhythm. Together, these data reveal potential new pathways of PP action and shed new light on the mechanisms by which non-genotoxic carcinogens control hepatocyte hypertrophy and proliferation. We demonstrate that GO mapping can identify, in an unbiased manner, both known and novel DEHP-induced molecular changes in the mouse liver and is therefore a powerful approach for elucidating modes of toxicity based on toxicogenomic data.
毒理基因组学有潜力揭示介导对毒物不良反应的分子途径和细胞过程。然而,毒理基因组学实验的初始输出通常是一长串在毒物暴露后表达发生改变的基因列表。为了在潜在的生物学途径和过程背景下解释基因表达变化,必须开发新的生物信息学方法。我们使用全局基因表达谱分析,结合基因本体论(GO)评估和途径映射工具,作为识别毒物暴露后受影响的分子途径和过程的无偏方法。我们选择将非遗传毒性致癌物和过氧化物酶体增殖剂(PP)邻苯二甲酸二己酯(DEHP)在小鼠肝脏中引起的急性效应作为模型系统。与已知的DEHP作用模式一致,我们对转录谱数据的GO分析显示,与过氧化物酶体细胞成分相关的基因以及参与羧酸和脂质代谢的基因显著过度表达。此外,我们还揭示了与其他生物学功能相关的基因表达变化,包括补体激活、止血、内质网过载反应和昼夜节律。这些数据共同揭示了PP作用的潜在新途径,并为非遗传毒性致癌物控制肝细胞肥大和增殖的机制提供了新的线索。我们证明,GO映射可以以无偏的方式识别小鼠肝脏中已知和新的DEHP诱导的分子变化,并因此是一种基于毒理基因组学数据阐明毒性模式的强大方法。