Suppr超能文献

通过社区驱动的协调语言推动环境健康科学的知识驱动发现。

Catalyzing Knowledge-Driven Discovery in Environmental Health Sciences through a Community-Driven Harmonized Language.

机构信息

Office of Data Science, National Institute of Environmental Health Sciences (NIEHS), Durham, NC 27709, USA.

Research Computing, RTI International, Durham, NC 27709, USA.

出版信息

Int J Environ Res Public Health. 2021 Aug 26;18(17):8985. doi: 10.3390/ijerph18178985.

Abstract

Harmonized language is critical for helping researchers to find data, collecting scientific data to facilitate comparison, and performing pooled and meta-analyses. Using standard terms to link data to knowledge systems facilitates knowledge-driven analysis, allows for the use of biomedical knowledge bases for scientific interpretation and hypothesis generation, and increasingly supports artificial intelligence (AI) and machine learning. Due to the breadth of environmental health sciences (EHS) research and the continuous evolution in scientific methods, the gaps in standard terminologies, vocabularies, ontologies, and related tools hamper the capabilities to address large-scale, complex EHS research questions that require the integration of disparate data and knowledge sources. The results of prior workshops to advance a harmonized environmental health language demonstrate that future efforts should be sustained and grounded in scientific need. We describe a community initiative whose mission was to advance integrative environmental health sciences research via the development and adoption of a harmonized language. The products, outcomes, and recommendations developed and endorsed by this community are expected to enhance data collection and management efforts for NIEHS and the EHS community, making data more findable and interoperable. This initiative will provide a community of practice space to exchange information and expertise, be a coordination hub for identifying and prioritizing activities, and a collaboration platform for the development and adoption of semantic solutions. We encourage anyone interested in advancing this mission to engage in this community.

摘要

统一的语言对于帮助研究人员查找数据、收集科学数据以促进比较以及进行汇总和荟萃分析至关重要。使用标准术语将数据与知识系统联系起来有助于知识驱动的分析,允许利用生物医学知识库进行科学解释和假设生成,并越来越支持人工智能 (AI) 和机器学习。由于环境卫生科学 (EHS) 研究的广泛性以及科学方法的不断发展,标准术语、词汇、本体和相关工具方面的差距阻碍了处理需要整合不同数据和知识来源的大规模复杂 EHS 研究问题的能力。推进统一环境卫生语言的先前研讨会的结果表明,未来的努力应该持续并基于科学需求。我们描述了一项社区倡议,其使命是通过开发和采用统一语言来推进综合环境卫生科学研究。该社区制定和认可的产品、成果和建议有望增强 NIEHS 和 EHS 社区的数据收集和管理工作,使数据更易于查找和互操作。该倡议将为交流信息和专业知识提供实践社区空间,成为确定和优先开展活动的协调中心,以及开发和采用语义解决方案的协作平台。我们鼓励任何有兴趣推进这一使命的人参与到这个社区中来。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/be7b/8430534/879ee5e46fa4/ijerph-18-08985-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验