Nijenhuis Tom, Vallon Volker, van der Kemp Annemiete W C M, Loffing Johannes, Hoenderop Joost G J, Bindels René J M
Department of Physiology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands.
J Clin Invest. 2005 Jun;115(6):1651-8. doi: 10.1172/JCI24134. Epub 2005 May 12.
Thiazide diuretics enhance renal Na+ excretion by blocking the Na+-Cl- cotransporter (NCC), and mutations in NCC result in Gitelman syndrome. The mechanisms underlying the accompanying hypocalciuria and hypomagnesemia remain debated. Here, we show that enhanced passive Ca2+ transport in the proximal tubule rather than active Ca2+ transport in distal convolution explains thiazide-induced hypocalciuria. First, micropuncture experiments in mice demonstrated increased reabsorption of Na+ and Ca2+ in the proximal tubule during chronic hydrochlorothiazide (HCTZ) treatment, whereas Ca2+ reabsorption in distal convolution appeared unaffected. Second, HCTZ administration still induced hypocalciuria in transient receptor potential channel subfamily V, member 5-knockout (Trpv5-knockout) mice, in which active distal Ca2+ reabsorption is abolished due to inactivation of the epithelial Ca2+ channel Trpv5. Third, HCTZ upregulated the Na+/H+ exchanger, responsible for the majority of Na+ and, consequently, Ca2+ reabsorption in the proximal tubule, while the expression of proteins involved in active Ca2+ transport was unaltered. Fourth, experiments addressing the time-dependent effect of a single dose of HCTZ showed that the development of hypocalciuria parallels a compensatory increase in Na+ reabsorption secondary to an initial natriuresis. Hypomagnesemia developed during chronic HCTZ administration and in NCC-knockout mice, an animal model of Gitelman syndrome, accompanied by downregulation of the epithelial Mg2+ channel transient receptor potential channel subfamily M, member 6 (Trpm6). Thus, Trpm6 downregulation may represent a general mechanism involved in the pathogenesis of hypomagnesemia accompanying NCC inhibition or inactivation.
噻嗪类利尿剂通过阻断钠氯共转运体(NCC)来增强肾脏对钠离子的排泄,而NCC的突变会导致吉特曼综合征。伴随的低钙尿症和低镁血症的潜在机制仍存在争议。在此,我们表明,近端小管中被动钙转运增强而非远曲小管中主动钙转运增强可解释噻嗪类药物引起的低钙尿症。首先,对小鼠进行的微穿刺实验表明,在慢性氢氯噻嗪(HCTZ)治疗期间,近端小管对钠和钙的重吸收增加,而远曲小管中的钙重吸收似乎未受影响。其次,在瞬时受体电位通道亚家族V成员5基因敲除(Trpv5基因敲除)小鼠中,由于上皮钙通道Trpv5失活,主动远曲小管钙重吸收被消除,但给予HCTZ仍会导致低钙尿症。第三,HCTZ上调了钠氢交换体,该交换体负责近端小管中大部分钠的重吸收,进而负责大部分钙的重吸收,而参与主动钙转运的蛋白质表达未改变。第四,针对单次给予HCTZ的时间依赖性效应的实验表明,低钙尿症的发展与初始利钠后钠重吸收的代偿性增加平行。慢性给予HCTZ期间以及在吉特曼综合征动物模型NCC基因敲除小鼠中出现了低镁血症,同时伴有上皮镁通道瞬时受体电位通道亚家族M成员6(Trpm6)的下调。因此,Trpm6下调可能是NCC抑制或失活伴随的低镁血症发病机制中的一个普遍机制。