Nacher J C, Ueda N, Kanehisa M, Akutsu T
Bioinformatics Center, Institute for Chemical Research, Kyoto University, Uji 611-0011, Japan.
Phys Rev E Stat Nonlin Soft Matter Phys. 2005 Mar;71(3 Pt 2A):036132. doi: 10.1103/PhysRevE.71.036132. Epub 2005 Mar 23.
Extensive studies have been done to understand the principles behind architectures of real networks. Recently, evidence for hierarchical organization in many real networks has also been reported. Here, we present a hierarchical model that reproduces the main experimental properties observed in real networks: scale-free of degree distribution P (k) [frequency of the nodes that are connected to k other nodes decays as a power law P (k) approximately k(-gamma) ] and power-law scaling of the clustering coefficient C (k) approximately k(-1) . The major points of our model can be summarized as follows. (a) The model generates networks with scale-free distribution for the degree of nodes with general exponent gamma>2 , and arbitrarily close to any specified value, being able to reproduce most of the observed hierarchical scale-free topologies. In contrast, previous models cannot obtain values of gamma>2.58 . (b) Our model has structural flexibility because (i) it can incorporate various types of basic building blocks (e.g., triangles, tetrahedrons, and, in general, fully connected clusters of n nodes) and (ii) it allows a large variety of configurations (i.e., the model can use more than n-1 copies of basic blocks of n nodes). The structural features of our proposed model might lead to a better understanding of architectures of biological and nonbiological networks.
为了理解真实网络架构背后的原理,人们已经进行了广泛的研究。最近,也有报道称在许多真实网络中存在层次组织的证据。在此,我们提出一种层次模型,该模型能够重现真实网络中观察到的主要实验特性:度分布(P(k))(连接到(k)个其他节点的节点频率以幂律(P(k)\approx k^{-\gamma})衰减)的无标度性以及聚类系数(C(k)\approx k^{-1})的幂律缩放。我们模型的要点可总结如下。(a) 该模型生成的网络对于节点度具有无标度分布,一般指数(\gamma>2),并且可以任意接近任何指定值,能够重现大多数观察到的层次无标度拓扑结构。相比之下,先前的模型无法获得(\gamma>2.58)的值。(b) 我们的模型具有结构灵活性,因为 (i) 它可以纳入各种类型的基本构建块(例如三角形、四面体,一般来说是(n)个节点的完全连接簇),并且 (ii) 它允许大量的配置(即该模型可以使用超过(n - 1)个(n)节点基本块的副本)。我们提出的模型的结构特征可能有助于更好地理解生物和非生物网络的架构。