Suppr超能文献

通过似然性生长最优无标度网络。

Growing optimal scale-free networks via likelihood.

作者信息

Small Michael, Li Yingying, Stemler Thomas, Judd Kevin

机构信息

School of Mathematics and Statistics, University of Western Australia, Crawley, WA, Australia, 6009.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Apr;91(4):042801. doi: 10.1103/PhysRevE.91.042801. Epub 2015 Apr 7.

Abstract

Preferential attachment, by which new nodes attach to existing nodes with probability proportional to the existing nodes' degree, has become the standard growth model for scale-free networks, where the asymptotic probability of a node having degree k is proportional to k^{-γ}. However, the motivation for this model is entirely ad hoc. We use exact likelihood arguments and show that the optimal way to build a scale-free network is to attach most new links to nodes of low degree. Curiously, this leads to a scale-free network with a single dominant hub: a starlike structure we call a superstar network. Asymptotically, the optimal strategy is to attach each new node to one of the nodes of degree k with probability proportional to 1/N+ζ(γ)(k+1)(γ) (in a N node network): a stronger bias toward high degree nodes than exhibited by standard preferential attachment. Our algorithm generates optimally scale-free networks (the superstar networks) as well as randomly sampling the space of all scale-free networks with a given degree exponent γ. We generate viable realization with finite N for 1≪γ<2 as well as γ>2. We observe an apparently discontinuous transition at γ≈2 between so-called superstar networks and more treelike realizations. Gradually increasing γ further leads to reemergence of a superstar hub. To quantify these structural features, we derive a new analytic expression for the expected degree exponent of a pure preferential attachment process and introduce alternative measures of network entropy. Our approach is generic and can also be applied to an arbitrary degree distribution.

摘要

偏好依附,即新节点以与现有节点度成正比的概率连接到现有节点,已成为无标度网络的标准增长模型,在该模型中,节点度为k的渐近概率与k^(-γ)成正比。然而,这个模型的动机完全是特设的。我们使用精确似然论证并表明,构建无标度网络的最优方法是将大多数新链接连接到低度节点。奇怪的是,这会导致一个具有单个主导中心的无标度网络:一种我们称为超级巨星网络的星状结构。渐近地,最优策略是将每个新节点以与1/N + ζ(γ)(k + 1)^(γ)成正比的概率连接到度为k的节点之一(在一个N节点网络中):比标准偏好依附对高度节点的偏向更强。我们的算法生成最优无标度网络(超级巨星网络),并对具有给定度指数γ的所有无标度网络空间进行随机采样。我们为1≪γ<2以及γ>2生成了有限N的可行实现。我们观察到在γ≈2处,所谓的超级巨星网络和更像树状的实现之间存在明显的不连续转变。进一步逐渐增加γ会导致超级巨星中心再次出现。为了量化这些结构特征,我们为纯偏好依附过程的期望度指数推导了一个新的解析表达式,并引入了网络熵的替代度量。我们的方法是通用的,也可以应用于任意度分布。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验