Petitjean Cyril, Jacquod Philippe
Département de Physique Théorique, Université de Genève, CH-1211 Genève 4, Switzerland.
Phys Rev E Stat Nonlin Soft Matter Phys. 2005 Mar;71(3 Pt 2A):036223. doi: 10.1103/PhysRevE.71.036223. Epub 2005 Mar 29.
We investigate the time-dependent variance of the fidelity with which an initial narrow wave packet is reconstructed after its dynamics is time reversed with a perturbed Hamiltonian. In the semiclassical regime of perturbation, we show that the variance first rises algebraically up to a critical time t(c) , after which it decays. To leading order in the effective Planck's constant Planck's(eff) , this decay is given by the sum of a classical term approximately same as exp [-2lambdat] , a quantum term approximately same as 2Planck's(eff) exp [-Gamma t] , and a mixed term approximately 2 exp [- (Gamma+lambda) t] . Compared to the behavior of the average fidelity, this allows for the extraction of the classical Lyapunov exponent lambda in a larger parameter range. Our results are confirmed by numerical simulations.
我们研究了当初始窄波包在受扰哈密顿量作用下动力学时间反演后其保真度随时间的变化方差。在微扰的半经典区域,我们表明方差首先代数性上升直至临界时间(t(c)),之后衰减。在有效普朗克常数(Planck's(eff))的主导阶,这种衰减由一个与(\exp[-2\lambda t])近似相同的经典项、一个与(2Planck's(eff)\exp[-\Gamma t])近似相同的量子项以及一个与(2\exp[-(\Gamma + \lambda)t])近似相同的混合项之和给出。与平均保真度的行为相比,这使得在更大的参数范围内提取经典李雅普诺夫指数(\lambda)成为可能。我们的结果通过数值模拟得到了证实。