Medvedeva N I, Gornostyrev Yu N, Freeman A J
Department of Physics and Astronomy, Northwestern University, Evanston, Illinois 60208-3112, USA.
Phys Rev Lett. 2005 Apr 8;94(13):136402. doi: 10.1103/PhysRevLett.94.136402. Epub 2005 Apr 6.
The intrinsic mechanism of solid solution softening in bcc molybdenum alloys due to 5d transition metal additions is investigated on the basis of ab initio electronic-structure calculations that model the effect of alloying elements on the generalized stacking fault (GSF) energies. We demonstrate that additions with an excess of electrons (Re, Os, Ir, and Pt) lead to a decrease in the GSF energy and those with a lack of electrons (Hf and Ta) to its sharp increase. Using the generalized Peierls-Nabarro model for a nonplanar core, we associate the local reduction of the GSF energy with an enhancement of double kink nucleation and an increase of the dislocation mobility, and we reveal the electronic reasons for the observed dependence of the solution softening on the atomic number of the addition.
基于从头算电子结构计算,研究了体心立方钼合金中因添加5d过渡金属而导致的固溶软化内在机制,该计算模拟了合金元素对广义堆垛层错(GSF)能量的影响。我们证明,电子过剩的添加元素(Re、Os、Ir和Pt)会导致GSF能量降低,而电子缺乏的添加元素(Hf和Ta)会使其急剧增加。使用非平面核心的广义派尔斯-纳巴罗模型,我们将GSF能量的局部降低与双扭结形核的增强和位错迁移率的增加联系起来,并揭示了观察到的固溶软化对添加元素原子序数依赖性的电子原因。