Suppr超能文献

Renal nerve effects on renal adaptation to changes in sodium intake during ovine pregnancy.

作者信息

Aberdeen G W, Cha S C, Mukaddam-Daher S, Nuwayhid B S, Quillen E W

机构信息

Department of Obstetrics and Gynecology, McGill University, Montreal, Quebec, Canada.

出版信息

Am J Physiol. 1992 May;262(5 Pt 2):F823-9. doi: 10.1152/ajprenal.1992.262.5.F823.

Abstract

To assess the possibility of an enhanced role of renal nerves in the control of urinary sodium excretion (UNaV) and fluid homeostasis during pregnancy, urine output, UNaV, and urinary potassium excretion were assessed hourly for 3 days before and for 6 days after a step reduction in total daily sodium intake from 400 to 40 mmol. Studies were performed in normal conscious sheep (4 nonpregnant and 4 pregnant). Each animal was prepared with a divided bladder so that urine could be collected simultaneously from one normally innervated and one denervated kidney. In nonpregnant ewes, ratios of the rates of excretion by denervated vs. innervated kidneys for UNaV averaged 1.00 +/- 0.07 under steady-state conditions at high levels of sodium intake. This ratio was not different at the low-sodium-intake state. In contrast, this ratio was 1.15 +/- 0.07 at high sodium intake and 1.13 +/- 0.03 at low sodium intake in pregnant ewes. The ratios at both steady-state intake levels were different (P less than 0.05) between nonpregnant and pregnant sheep. During the transition between sodium intake states, these ratios were unchanged in nonpregnant animals, whereas pregnant animals exhibited peak ratios of 2.20 +/- 0.39 (P less than 0.05), indicating sodium wasting by the denervated kidneys. In summary, the data suggest that renal nerve activity may not be completely suppressed by high sodium intakes in pregnant sheep. Furthermore, the renal nerves have an enhanced influence on sodium conservation during and after the transition from high- to low-sodium-intake states during pregnancy.(ABSTRACT TRUNCATED AT 250 WORDS)

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验