Huber P, Soprunyuk V P, Embs J P, Wagner C, Deutsch M, Kumar S
Technische Physik, Universität des Saarlandes, 66041 Saarbrücken, Germany.
Phys Rev Lett. 2005 May 13;94(18):184504. doi: 10.1103/PhysRevLett.94.184504. Epub 2005 May 11.
Faraday surface instability measurements of the critical acceleration, a(c), and wave number, k(c), for standing surface waves on a tetracosanol (C24H50) melt exhibit abrupt changes at T(s)=54 degrees C, approximately 4 degrees C above the bulk freezing temperature. The measured variations of a(c) and k(c) vs temperature and driving frequency are accounted for quantitatively by a hydrodynamic model, revealing a change from a free-slip surface flow, generic for a free liquid surface (T>T(s)), to a surface-pinned, no-slip flow, characteristic of a flow near a wetted solid wall (T<T(s)). The change at T(s) is traced to the onset of surface freezing, where the steep velocity gradient in the surface-pinned flow significantly increases the viscous dissipation near the surface.
对二十四醇(C24H50)熔体上驻波的临界加速度a(c)和波数k(c)进行的法拉第表面不稳定性测量表明,在T(s)=54摄氏度时出现突变,该温度比整体凝固温度高出约4摄氏度。通过流体动力学模型对测量得到的a(c)和k(c)随温度及驱动频率的变化进行了定量分析,结果显示,从自由液体表面(T>T(s))常见的自由滑移表面流转变为接近湿固体壁面流动(T<T(s))特征的表面固定无滑移流。T(s)处的变化可追溯到表面冻结的开始,此时表面固定流中陡峭的速度梯度显著增加了表面附近的粘性耗散。