Suppr超能文献

重力与循环:“开放”系统与“封闭”系统

Gravity and the circulation: "open" vs. "closed" systems.

作者信息

Hicks J W, Badeer H S

机构信息

Department of Biomedical Sciences, School of Medicine, Creighton University, Omaha, Nebraska 68178-0224.

出版信息

Am J Physiol. 1992 May;262(5 Pt 2):R725-32. doi: 10.1152/ajpregu.1992.262.5.R725.

Abstract

The elementary principles of liquid dynamics are described by the equations of Bernoulli and Poiseuille. Bernoulli's equation deals with nonviscous liquids under steady streamline flow. Pressures in such flows are related to gravity and/or acceleration. Changes in elevation affect the gravitational potential energy of the liquid and the velocity of flow determines the kinetic energy. The sum of these three factors represented in the Bernoulli equation remains constant, but the variables are interconvertible. In contrast, the Poiseuille equation describes the pressures related to viscous resistance only, and the energy of flow is dissipated as heat. A combination of the two equations describes the flow in tubes more realistically than either equation alone. In "open" systems gravity hinders uphill flow and causes downhill flow, in which the liquid acts as a falling body. In contrast, in "closed" systems, like the circulation, gravity does not hinder uphill flow nor does it cause downhill flow, because gravity acts equally on the ascending and descending limbs of the circuit. Furthermore, in closed systems, the liquid cannot "fall" by gravity from higher levels of gravitational potential to lower levels of potential. Flow, up or down, must be induced by some source of energy against the resistance of the circuit. In the case of the circulation, the pumping action of the heart supplies the needed energy gradients. Flow in collapsible tubes, like veins, obeys the same basic laws of liquid dynamics except that transmural pressures near zero or below zero reduce markedly the cross-sectional area of the tube, which increases the viscous resistance to flow.(ABSTRACT TRUNCATED AT 250 WORDS)

摘要

液体动力学的基本原理由伯努利方程和泊肃叶方程描述。伯努利方程处理稳定层流状态下的非粘性液体。此类流动中的压力与重力和/或加速度有关。高度变化会影响液体的重力势能,而流速决定动能。伯努利方程中这三个因素的总和保持不变,但这些变量可以相互转换。相比之下,泊肃叶方程仅描述与粘性阻力相关的压力,且流动能量以热量形式耗散。两个方程结合起来比单独任何一个方程更能实际地描述管道中的流动。在“开放”系统中,重力阻碍液体向上流动并导致其向下流动,此时液体就像一个落体。相反,在“封闭”系统中,如循环系统,重力既不阻碍液体向上流动,也不会导致其向下流动,因为重力对循环路径的上升和下降分支作用相同。此外,在封闭系统中,液体不会因重力从较高重力势能水平“下落”到较低势能水平。液体向上或向下的流动必须由某种能量源克服循环阻力来引发。就循环系统而言,心脏的泵血作用提供了所需的能量梯度。在可塌陷管道(如静脉)中的流动遵循相同的液体动力学基本定律,只是跨壁压力接近零或低于零时会显著减小管道的横截面积,从而增加流动的粘性阻力。(摘要截选至250词)

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验