Thakali Keshari, Demel Stacie L, Fink Gregory D, Watts Stephanie W
Department of Pharmacology and Toxicology, Michigan State University, E. Lansing, MI 48824-1317, USA.
Am J Physiol Heart Circ Physiol. 2005 Sep;289(3):H1115-22. doi: 10.1152/ajpheart.00086.2005. Epub 2005 May 20.
Reactive oxygen species (ROS), such as superoxide and H(2)O(2), are capable of modifying vascular tone, although the response to ROS can vary qualitatively among vascular beds, experimental procedures, and species. Endothelin-1 (ET-1) induces superoxide production, which can be dismutated to H(2)O(2). The RhoA/Rho kinase pathway partially mediates ET-1-induced contraction and recently was implicated in superoxide-induced contraction. We hypothesized that H(2)O(2), not superoxide, mediates venous ET-1-induced contraction. Rat thoracic aorta and vena cava contracted to exogenously added H(2)O(2) (1 microM-1 mM) [maximum aortic contraction = 10 +/- 3% of phenylephrine (10 microM) contraction; maximum venous contraction = 85 +/- 13% of norepinephrine (10 microM) contraction]. (+)-(R)-trans-4-(1-aminoethyl-N-4-pyridil)cyclohexanecarboxamide dihydrochloride (Y-27632, 10 microM), a Rho kinase inhibitor, significantly reduced venous H(2)O(2)-induced contraction (15 +/- 1% of control maximum) and reduced maximum ET-1-induced contraction by 59 +/- 1%. However, neither the H(2)O(2) scavenger catalase (100 and 2,000 U/ml) nor cell permeable polyethylene glycol-catalase (163 and 326 U/ml) reduced ET-1-induced contraction in the vena cava. The catalase inhibitor 3-aminotriazole (3-AT) also had no effect on maximal venous ET-1-induced contraction. Basal H(2)O(2) levels were three times higher in the vena cava than in the aorta (vena cava, 0.74 +/- 0.09 nmol H(2)O(2)/mg protein; aorta, 0.24 +/- 0.05 nmol H(2)O(2)/mg protein). ET-1 (100 nM) increased H(2)O(2) in the vena cava but not in the aorta (vena cava, 154.10 +/- 17.29% of control H(2)O(2); aorta, 83.72 +/- 20.20%). Antagonism of either ET(A) or ET(B) receptors with the use of atrasentan (30 nM) or BQ-788 (100 nM), respectively, reduced ET-1 (100 nM)-induced increases in venous H(2)O(2). In summary, ET-1 increased H(2)O(2) in veins but not arteries, and venous ET-1-induced H(2)O(2) production was independent of the contractile properties of ET-1.
活性氧(ROS),如超氧化物和H₂O₂,能够改变血管张力,尽管不同血管床、实验方法和物种对ROS的反应在性质上可能有所不同。内皮素-1(ET-1)可诱导超氧化物生成,超氧化物可歧化为H₂O₂。RhoA/Rho激酶途径部分介导ET-1诱导的收缩,最近有研究表明其也参与超氧化物诱导的收缩。我们推测,介导静脉ET-1诱导收缩的是H₂O₂而非超氧化物。大鼠胸主动脉和腔静脉对外源性添加的H₂O₂(1微摩尔/升 - 1毫摩尔/升)产生收缩反应[主动脉最大收缩幅度 = 去氧肾上腺素(10微摩尔/升)收缩幅度的10±3%;腔静脉最大收缩幅度 = 去甲肾上腺素(10微摩尔/升)收缩幅度的85±13%]。Rho激酶抑制剂(+)-(R)-反式-4-(1-氨基乙基-N-4-吡啶基)环己烷甲酰胺二盐酸盐(Y-27632,10微摩尔/升)显著降低了腔静脉H₂O₂诱导的收缩(为对照最大收缩幅度的15±1%),并使ET-1诱导的最大收缩幅度降低了59±1%。然而,H₂O₂清除剂过氧化氢酶(100和2000单位/毫升)以及细胞可渗透的聚乙二醇 - 过氧化氢酶(163和326单位/毫升)均未降低腔静脉中ET-1诱导的收缩。过氧化氢酶抑制剂3-氨基三唑(3-AT)对腔静脉ET-1诱导的最大收缩也没有影响。腔静脉中的基础H₂O₂水平是主动脉中的三倍(腔静脉,0.74±0.09纳摩尔H₂O₂/毫克蛋白质;主动脉,0.24±0.05纳摩尔H₂O₂/毫克蛋白质)。ET-1(100纳摩尔)可使腔静脉中的H₂O₂增加,但对主动脉无此作用(腔静脉,为对照H₂O₂的154.10±17.29%;主动脉,为对照H₂O₂的83.72±20.20%)。分别使用阿曲生坦(30纳摩尔)或BQ-788(100纳摩尔)拮抗ET(A)或ET(B)受体,可降低ET-1(100纳摩尔)诱导的静脉H₂O₂增加。总之,ET-1可使静脉而非动脉中的H₂O₂增加,且静脉ET-1诱导的H₂O₂生成与ET-1的收缩特性无关。