Suppr超能文献

分子动力学积分与分子振动理论。I. 新的辛积分器。

Molecular dynamics integration and molecular vibrational theory. I. New symplectic integrators.

作者信息

Janezic Dusanka, Praprotnik Matej, Merzel Franci

机构信息

National Institute of Chemistry, Ljubljana, Slovenia.

出版信息

J Chem Phys. 2005 May 1;122(17):174101. doi: 10.1063/1.1884607.

Abstract

New symplectic integrators have been developed by combining molecular dynamics integration with the standard theory of molecular vibrations to solve the Hamiltonian equations of motion. The presented integrators analytically resolve the internal high-frequency molecular vibrations by introducing a translating and rotating internal coordinate system of a molecule and calculating normal modes of an isolated molecule only. The translation and rotation of a molecule are treated as vibrational motions with the vibrational frequency zero. All types of motion are thus described in terms of the normal coordinates. The method's time reversibility requirement was used to determine the equations of motion for internal coordinate system of a molecule. The calculation of long-range forces is performed numerically within the generalized second-order leap-frog scheme, in the same way as in standard second-order symplectic methods. The new methods for integrating classical equations of motion using normal mode analysis allow us to use a long integration step and are applicable to any system of molecules with one equilibrium configuration.

摘要

通过将分子动力学积分与分子振动的标准理论相结合,开发出了新的辛积分器,用于求解哈密顿运动方程。所提出的积分器通过引入分子的平移和旋转内坐标系统,并仅计算孤立分子的简正模式,来解析内部高频分子振动。分子的平移和旋转被视为振动频率为零的振动运动。因此,所有类型的运动都用简正坐标来描述。该方法的时间可逆性要求被用于确定分子内坐标系统的运动方程。长程力的计算在广义二阶蛙跳格式内进行数值计算,与标准二阶辛方法相同。使用简正模式分析来积分经典运动方程的新方法使我们能够采用长积分步长,并且适用于任何具有一个平衡构型的分子系统。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验