Mathiowetz A M, Jain A, Karasawa N, Goddard W A
Division of Chemistry and Chemical Engineering (CN 8921), Materials and Molecular Simulation Center, Beckman Institute (139-74), California.
Proteins. 1994 Nov;20(3):227-47. doi: 10.1002/prot.340200304.
Two new methods developed for molecular dynamics simulations of very large proteins are applied to a series of proteins ranging up to the protein capsid of tomato bushy stunt virus (TBSV). For molecular dynamics of very large proteins and polymers, it is useful to carry out the dynamics using internal coordinates (say, torsions only) rather than Cartesian coordinates. This allows larger time steps, eliminates problems with the classical description of high energy modes, and focuses on the important degrees of freedom. The resulting equation of motion has the form. [formula: see text] where for T is the vector of generalized forces, M(theta) is the moments of inertia tensor, theta is the vector of torsions, and C is a vector containing Coriolis forces and nonbond forces. The problem is that to calculate the acceleration vector theta from M, C, and T requires inverting M(theta), an order N3 calculation. Since the number of degrees of freedom might be 300,000 for a million atom system, solving these equations every time step is impractical, restricting internal coordinate methods to small systems. The new method, Newton-Euler Inverse Mass Operator (NEIMO) dynamics, constructs the torsional accelerations vector theta = M-1 (T-C) directly by an order N process, allowing internal-coordinate dynamics to be solved for super larger (million atom) systems. The first use of the NEIMO method for molecular dynamics of proteins is presented here. A second serious difficulty for large proteins is calculation of the nonbond forces. We report here the first application to proteins of the new Cell Multipole Method (CMM) to evaluate the Coulomb and van der Waals interactions. The costs of CMM scales linearly with the number of particles while retaining an accuracy significantly better than standard nonbond methods (involving cutoffs). Results for NEIMO and CMM are given for simulations of a wide range of peptide and protein systems, including the protein capsid of TBSV with 488,000 atoms. The computational times for NEIMO and CMM are demonstrated to scale linearly with size. With NEIMO the dynamics time steps can be as large as 20 fs (for small peptides), much larger than possible with standard Cartesian coordinate dynamics. For TBSV we considered both the normal form and the high pH form, in which the Ca2+ ions are removed. These calculations lead to a contraction of the protein for both forms (probably because of ignoring the RNA core not observed in the X-ray).
为非常大的蛋白质的分子动力学模拟开发的两种新方法被应用于一系列蛋白质,最大到番茄丛矮病毒(TBSV)的蛋白质衣壳。对于非常大的蛋白质和聚合物的分子动力学,使用内坐标(比如说,仅扭转角)而非笛卡尔坐标来进行动力学计算是很有用的。这允许采用更大的时间步长,消除了高能模式经典描述中的问题,并聚焦于重要的自由度。所得的运动方程具有如下形式。[公式:见原文]其中T是广义力向量,M(θ)是惯性张量矩,θ是扭转角向量,C是包含科里奥利力和非键合力的向量。问题在于,要从M、C和T计算加速度向量θ需要对M(θ)求逆,这是一个N³阶的计算。由于对于一个百万原子系统,自由度的数量可能达到300,000,每次时间步都求解这些方程是不切实际的,这限制了内坐标方法只能用于小系统。新方法,牛顿 - 欧拉逆质量算子(NEIMO)动力学,通过一个N阶过程直接构建扭转加速度向量θ = M⁻¹(T - C),从而使得能够求解超大(百万原子)系统的内坐标动力学。本文展示了NEIMO方法在蛋白质分子动力学中的首次应用。对于大蛋白质的第二个严重困难是非键合力的计算。我们在此报告新的细胞多极方法(CMM)在蛋白质上的首次应用,以评估库仑力和范德华相互作用。CMM的计算成本与粒子数量呈线性比例关系,同时保持比标准非键方法(涉及截断)显著更高的精度。给出了NEIMO和CMM在多种肽和蛋白质系统模拟中的结果,包括具有488,000个原子的TBSV蛋白质衣壳。结果表明,NEIMO和CMM的计算时间与系统大小呈线性比例关系。使用NEIMO时,动力学时间步长可以大到20飞秒(对于小肽),比标准笛卡尔坐标动力学可能的时间步长大得多。对于TBSV,我们考虑了正常形式和高pH形式,其中Ca²⁺离子被去除。这些计算导致两种形式的蛋白质都发生收缩(可能是因为忽略了X射线中未观察到的RNA核心)。