Suppr超能文献

Biphasic accumulation kinetics of [99mTc]-hexakis-2-methoxyisobutyl isonitrile in tumour cells and its modulation by lipophilic P-glycoprotein ligands.

作者信息

Márián Teréz, Balkay László, Szabó Gábor, Krasznai Zoárd T, Hernádi Zoltán, Galuska László, Szabó-Péli Judit, Esik Olga, Trón Lajos, Krasznai Zoltán

机构信息

PET Center, University of Debrecen, Medical and Health Science Centre, 4012 Debrecen, Nagyerdei krt 98, Hungary.

出版信息

Eur J Pharm Sci. 2005 Jun;25(2-3):201-9. doi: 10.1016/j.ejps.2005.02.010. Epub 2005 Mar 16.

Abstract

AIM

To study the accumulation and washout kinetics of [99mTc]-hexakis-2-methoxyisobutyl isonitrile (99mTc-MIBI) in MDR positive and MDR negative tumour cells and how this is modified by lipophilic P-glycoprotein ligands.

METHODS

The tumour cells were incubated in the presence and absence of the ligands and the uptakes of 99mTc-MIBI, rhodamine 123 and 2-[18F]fluoro-2-deoxy-D-glucose (18FDG) were measured.

RESULTS

The accumulation of 99mTc-MIBI in the tumour cells followed biphasic kinetics. Verapamil and cyclosporin A increased the membrane fluidity and significantly enhanced the 99mTc-MIBI uptake of the MDR negative cells, while the rhodamine 123 uptake was not affected. Verapamil significantly increased the uptake of rhodamine 123 and 18FDG but did not modify that of 99mTc-MIBI in the MDR positive cells. Cyclosporin A significantly increased the 18FDG uptake of the MDR positive and negative tumour cells; these effects were ouabain-sensitive. Depolarization of the cytoplasmic membrane, acidification of the extracellular medium and the administration of CCCP decreased the accumulation of 99mTc-MIBI and rhodamine 123 uptake in the tumour cells.

CONCLUSIONS

Lipophilic P-glycoprotein ligands modified the biphasic accumulation kinetics of the 99mTc-MIBI uptakes of MDR negative and positive tumour cells in different and complex ways and could therefore mask the P-glycoprotein pump-dependent changes in tracer accumulation.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验