Suppr超能文献

A concerted mechanism for the transfer of the thiophosphinoyl group from aryl dimethylphosphinothioate esters to oxyanionic nucleophiles in aqueous solution.

作者信息

Onyido Ikenna, Swierczek Krzysztof, Purcell Jamie, Hengge Alvan C

机构信息

Department of Chemistry and Center for Agrochemical Technology, University of Agriculture, Makurdi, Nigeria.

出版信息

J Am Chem Soc. 2005 Jun 1;127(21):7703-11. doi: 10.1021/ja0501565.

Abstract

Earlier work on the hydrolysis of aryl phosphinothioate esters has led to contradictory mechanistic conclusions. To resolve this mechanistic ambiguity, we have measured linear free energy relationships (beta(nuc) and beta(lg)) and kinetic isotope effects for the reactions of oxyanions with aryl dimethylphosphinothioates. For the attack of nucleophiles on 4-nitrophenyl dimethylphosphinothioate, beta(nuc) = 0.47 +/- 0.05 for phenoxide nucleophiles (pK(a) < 11) and beta(nuc) = 0.08 +/- 0.01 for hydroxide and alkoxide nucleophiles (pK(a) >or= 11). Linearity of the plot in the range that straddles the pK(a) of the leaving group (4-nitrophenoxide, pK(a) 7.14) is indicative of a concerted mechanism. The much lower value of beta(nuc) for the more basic nucleophiles reveals the importance of a desolvation step prior to rate-limiting nucleophilic attack. The reactions of a series of substituted aryl dimethylphosphinothioate esters give the same value of beta(lg) with the nucleophiles HO(-) (beta= -0.54 +/- 0.03) and PhO(-) (beta = -0.52 +/- 0.09). A significantly better Hammett correlation is obtained with sigma(-) than with sigma or sigma degrees , as expected for a transition state involving rate-limiting cleavage of the P-OAr bond. The (18)O KIE at the position of bond fission ((18)k = 1.0124 +/- 0.0008) indicates the P-O bond is approximately 40% broken, and the (15)N KIE in the leaving group ((15)k = 1.0009 +/- 0.0003) reveals the nucleofuge carries about a third of a negative charge in the transition state. Thus, both the LFER and KIE data are consistent with a concerted reaction and disfavor a stepwise mechanism.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验