Bernskoetter Wesley H, Pool Jaime A, Lobkovsky Emil, Chirik Paul J
Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853, USA.
J Am Chem Soc. 2005 Jun 1;127(21):7901-11. doi: 10.1021/ja050387b.
Functionalization of the N2 ligand in the side-on bound dinitrogen complex, [(eta5-C5Me4H)2Zr]2(mu2,eta2,eta2-N2), has been accomplished by addition of terminal alkynes to furnish acetylide zirconocene diazenido complexes, [(eta5-C5Me4H)2Zr(C[triple bond]CR)]2(mu2,eta2,eta2-N2H2) (R = nBu, tBu, Ph). Characterization of [(eta5-C5Me4H)2Zr(C[triple bond]CCMe3)]2(mu2,eta2,eta2-N2H2) by X-ray diffraction revealed a side-on bound diazenido ligand in the solid state, while variable-temperature 1H and 15N NMR studies established rapid interconversion between eta1,eta1 and eta2,eta2 hapticity of the [N2H2]2- ligand in solution. Synthesis of alkyl, halide, and triflato zirconocene diazenido complexes, [(eta5-C5Me4H)2ZrX]2(mu2,eta1,eta1-N2H2) (X = Cl, I, OTf, CH2Ph, CH2SiMe3), afforded eta1,eta1 coordination of the [N2H2]2- fragment both in the solid state and in solution, demonstrating that sterically demanding, in some cases pi-donating, ligands can overcome the electronically preferred side-on bonding mode. Unlike [(eta5-C5Me4H)2ZrH]2(mu2,eta2,eta2-N2H2), the acetylide and alkyl zirconocene diazenido complexes are thermally robust, resisting alpha-migration and N2 cleavage up to temperatures of 115 degrees C. Dinitrogen functionalization with [(eta5-C5Me4H)2Zr]2(mu2,eta2,eta2-N2) was also accomplished by addition of proton donors. Weak Brønsted acids such as water and ethanol yield hydrazine and (eta5-C5Me4H)2Zr(OH)2 and (eta5-C5Me4H)2Zr(OEt)2, respectively. Treatment of [(eta5-C5Me4H)2Zr]2(mu2,eta2,eta2-N2) with HNMe2 or H2NNMe2 furnished amido or hydrazido zirconocene diazenido complexes that ultimately produce hydrazine upon protonation with ethanol. These results contrast previous observations with [(eta5-C5Me5)2Zr(eta1-N2)]2(mu2,eta1,eta1-N2) where loss of free dinitrogen is observed upon treatment with weak acids. These studies highlight the importance of cyclopentadienyl substituents on transformations involving coordinated dinitrogen.
通过添加末端炔烃以提供乙炔基二茂锆二氮烯基配合物[(η⁵-C₅Me₄H)₂Zr(C≡CR)]₂(μ₂,η²,η²-N₂H₂)(R = nBu、tBu、Ph),实现了侧基配位的二氮配合物[(η⁵-C₅Me₄H)₂Zr]₂(μ₂,η²,η²-N₂)中N₂配体的官能团化。通过X射线衍射对[(η⁵-C₅Me₄H)₂Zr(C≡CCMe₃)]₂(μ₂,η²,η²-N₂H₂)进行表征,结果表明在固态下存在侧基配位的二氮烯基配体,而变温¹H和¹⁵N NMR研究表明,溶液中[N₂H₂]²⁻配体在η¹,η¹和η²,η²配体键合模式之间快速相互转化。烷基、卤化物和三氟甲磺酸根二茂锆二氮烯基配合物[(η⁵-C₅Me₄H)₂ZrX]₂(μ₂,η¹,η¹-N₂H₂)(X = Cl、I、OTf、CH₂Ph、CH₂SiMe₃)的合成表明,在固态和溶液中,[N₂H₂]²⁻片段均以η¹,η¹配位,这表明在某些情况下,空间位阻较大的π供体配体可以克服电子上更倾向的侧基键合模式。与[(η⁵-C₅Me₄H)₂ZrH]₂(μ₂,η²,η²-N₂H₂)不同,乙炔基和烷基二茂锆二氮烯基配合物具有热稳定性,在高达115℃的温度下能抵抗α-迁移和N₂裂解。用[(η⁵-C₅Me₄H)₂Zr]₂(μ₂,η²,η²-N₂)进行二氮官能团化也可通过添加质子供体来实现。水和乙醇等弱布朗斯特酸分别生成肼以及(η⁵-C₅Me₄H)₂Zr(OH)₂和(η⁵-C₅Me₄H)₂Zr(OEt)₂。用HNMe₂或H₂NNMe₂处理[(η⁵-C₅Me₄H)₂Zr]₂(μ₂,η²,η²-N₂)可得到酰胺基或肼基二茂锆二氮烯基配合物,这些配合物在用乙醇质子化后最终生成肼。这些结果与之前用[(η⁵-C₅Me₅)₂Zr(η¹-N₂)]₂(μ₂,η¹,η¹-N₂)所做的观察结果形成对比,在用弱酸处理时会观察到游离二氮的损失。这些研究突出了环戊二烯基取代基在涉及配位二氮的转化过程中的重要性。