Rodríguez-Escudero Isabel, Roelants Françoise M, Thorner Jeremy, Nombela César, Molina María, Cid Víctor J
Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid, Pza. de Ramón y Cajal s/n, 28040 Madrid, Spain.
Biochem J. 2005 Sep 1;390(Pt 2):613-23. doi: 10.1042/BJ20050574.
The mammalian signalling pathway involving class I PI3K (phosphoinositide 3-kinase), PTEN (phosphatidylinositol 3-phosphatase) and PKB (protein kinase B)/c-Akt has roles in multiple processes, including cell proliferation and apoptosis. To facilitate novel approaches for genetic, molecular and pharmacological analyses of these proteins, we have reconstituted this signalling pathway by heterologous expression in the unicellular eukaryote, Saccharomyces cerevisiae (yeast). High-level expression of the p110 catalytic subunit of mammalian PI3K dramatically inhibits yeast cell growth. This effect depends on PI3K kinase activity and is reversed partially by a PI3K inhibitor (LY294002) and reversed fully by co-expression of catalytically active PTEN (but not its purported yeast orthologue, Tep1). Growth arrest by PI3K correlates with loss of PIP2 (phosphatidylinositol 4,5-bisphosphate) and its conversion into PIP3 (phosphatidylinositol 3,4,5-trisphosphate). PIP2 depletion causes severe rearrangements of actin and septin architecture, defects in secretion and endocytosis, and activation of the mitogen-activated protein kinase, Slt2. In yeast producing PIP3, PKB/c-Akt localizes to the plasma membrane and its phosphorylation is enhanced. Phospho-specific antibodies show that both active and kinase-dead PKB/c-Akt are phosphorylated at Thr308 and Ser473. Thr308 phosphorylation, but not Ser473 phosphorylation, requires the yeast orthologues of mammalian PDK1 (3-phosphoinositide-dependent protein kinase-1): Pkh1 and Pkh2. Elimination of yeast Tor1 and Tor2 function, or of the related kinases (Tel1, Mec1 and Tra1), did not block Ser473 phosphorylation, implicating another kinase(s). Reconstruction of the PI3K/PTEN/Akt pathway in yeast permits incisive study of these enzymes and analysis of their functional interactions in a simplified context, establishes a new tool to screen for novel agonists and antagonists and provides a method to deplete PIP2 uniquely in the yeast cell.
涉及I类PI3K(磷脂酰肌醇3激酶)、PTEN(磷脂酰肌醇3磷酸酶)和PKB(蛋白激酶B)/c-Akt的哺乳动物信号通路在包括细胞增殖和凋亡在内的多个过程中发挥作用。为了促进对这些蛋白质进行遗传、分子和药理学分析的新方法,我们通过在单细胞真核生物酿酒酵母(酵母)中进行异源表达来重建了这条信号通路。哺乳动物PI3K的p110催化亚基的高水平表达显著抑制酵母细胞生长。这种效应依赖于PI3K激酶活性,部分被PI3K抑制剂(LY294002)逆转,并且通过共表达具有催化活性的PTEN(而不是其所谓的酵母同源物Tep1)完全逆转。PI3K引起的生长停滞与PIP2(磷脂酰肌醇4,5-二磷酸)的丧失及其转化为PIP3(磷脂酰肌醇3,4,5-三磷酸)相关。PIP2的消耗导致肌动蛋白和隔膜结构的严重重排、分泌和内吞作用的缺陷以及促分裂原活化蛋白激酶Slt2的激活。在产生PIP3的酵母中,PKB/c-Akt定位于质膜并且其磷酸化增强。磷酸特异性抗体显示活性和激酶失活的PKB/c-Akt在Thr308和Ser473处均被磷酸化。Thr308磷酸化而非Ser473磷酸化需要哺乳动物PDK1(3-磷酸肌醇依赖性蛋白激酶-1)的酵母同源物:Pkh1和Pkh2。消除酵母Tor1和Tor2功能或相关激酶(Tel1、Mec1和Tra1)不会阻断Ser473磷酸化,这意味着存在其他激酶。在酵母中重建PI3K/PTEN/Akt通路允许对这些酶进行深入研究,并在简化的背景下分析它们的功能相互作用,建立了一种筛选新型激动剂和拮抗剂的新工具,并提供了一种在酵母细胞中独特地消耗PIP2的方法。