Cockrell Alexandria J, Lange Jeffrey J, Wood Christopher, Mattingly Mark, McCroskey Scott M, Bradford William D, Conkright-Fincham Juliana, Weems Lauren, Guo Monica S, Gerton Jennifer L
Stowers Institute for Medical Research, Kansas City, Missouri, United States of America.
Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas, United States of America.
PLoS Genet. 2024 Jul 5;20(7):e1011331. doi: 10.1371/journal.pgen.1011331. eCollection 2024 Jul.
Nucleolar morphology is a well-established indicator of ribosome biogenesis activity that has served as the foundation of many screens investigating ribosome production. Missing from this field of study is a broad-scale investigation of the regulation of ribosomal DNA morphology, despite the essential role of rRNA gene transcription in modulating ribosome output. We hypothesized that the morphology of rDNA arrays reflects ribosome biogenesis activity. We established GapR-GFP, a prokaryotic DNA-binding protein that recognizes transcriptionally-induced overtwisted DNA, as a live visual fluorescent marker for quantitative analysis of rDNA organization in Schizosaccharomyces pombe. We found that the morphology-which we refer to as spatial organization-of the rDNA arrays is dynamic throughout the cell cycle, under glucose starvation, RNA pol I inhibition, and TOR activation. Screening the haploid S. pombe Bioneer deletion collection for spatial organization phenotypes revealed large ribosomal protein (RPL) gene deletions that alter rDNA organization. Further work revealed RPL gene deletion mutants with altered rDNA organization also demonstrate resistance to the TOR inhibitor Torin1. A genetic analysis of signaling pathways essential for this resistance phenotype implicated many factors including a conserved MAPK, Pmk1, previously linked to extracellular stress responses. We propose RPL gene deletion triggers altered rDNA morphology due to compensatory changes in ribosome biogenesis via multiple signaling pathways, and we further suggest compensatory responses may contribute to human diseases such as ribosomopathies. Altogether, GapR-GFP is a powerful tool for live visual reporting on rDNA morphology under myriad conditions.
核仁形态是核糖体生物合成活性的一个公认指标,它是许多研究核糖体产生的筛选的基础。尽管rRNA基因转录在调节核糖体产量中起着至关重要的作用,但该研究领域仍缺乏对核糖体DNA形态调控的广泛研究。我们假设rDNA阵列的形态反映了核糖体生物合成活性。我们建立了GapR-GFP,一种原核DNA结合蛋白,它能识别转录诱导的过度扭曲的DNA,作为一种实时视觉荧光标记,用于定量分析粟酒裂殖酵母中rDNA的组织。我们发现,rDNA阵列的形态——我们称之为空间组织——在整个细胞周期、葡萄糖饥饿、RNA聚合酶I抑制和TOR激活的情况下都是动态的。对单倍体粟酒裂殖酵母Bioneer缺失文库进行空间组织表型筛选,发现了改变rDNA组织的大核糖体蛋白(RPL)基因缺失。进一步的研究表明,rDNA组织改变的RPL基因缺失突变体也表现出对TOR抑制剂Torin1的抗性。对这种抗性表型所必需的信号通路进行遗传分析,涉及许多因素,包括一个保守的MAPK,Pmk1,以前与细胞外应激反应有关。我们提出,RPL基因缺失通过多种信号通路导致核糖体生物合成的补偿性变化,从而触发rDNA形态的改变,我们进一步认为,补偿性反应可能导致人类疾病,如核糖体病。总之,GapR-GFP是一种强大的工具,可在多种条件下对rDNA形态进行实时视觉报告。