Suppr超能文献

The role of conserved arginine residue in loop 4 of glycoside hydrolase family 10 xylanases.

作者信息

Nishimoto Mamoru, Kitaoka Motomitsu, Fushinobu Shinya, Hayashi Kiyoshi

机构信息

National Food Research Institute, Ibaraki, Japan.

出版信息

Biosci Biotechnol Biochem. 2005 May;69(5):904-10. doi: 10.1271/bbb.69.904.

Abstract

An arginine residue in loop 4 connecting beta strand 4 and alpha-helix 4 is conserved in glycoside hydrolase family 10 (GH10) xylanases. The arginine residues, Arg(204) in xylanase A from Bacillus halodurans C-125 (XynA) and Arg(196) in xylanase B from Clostridium stercorarium F9 (XynB), were replaced by glutamic acid, lysine, or glutamine residues (XynA R204E, K and Q, and XynB R196E, K and Q). The pH-k(cat)/K(m) and the pH-k(cat) relationships of these mutant enzymes were measured. The pK(e2) and pK(es2) values calculated from these curves were 8.59 and 8.29 (R204E), 8.59 and 8.10 (R204K), 8.61 and 8.19 (R204Q), 7.42 and 7.19 (R196E), 7.49 and 7.18 (R196K), and 7.86 and 7.38 (R196Q) respectively. Only the pK(es2) value of arginine derivatives was less than those of the wild types (8.49 and 9.39 [XynA] and 7.62 and 7.82 [XynB]). These results suggest that the conserved arginine residue in GH10 xylanases increases the pK(a) value of the proton donor Glu during substrate binding. The arginine residue is considered to clamp the proton donor and subsite +1 to prevent structural change during substrate binding.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验