Suppr超能文献

色素分散因子和γ-氨基丁酸使麻点大蠊分离的生物钟细胞同步化。

Pigment-dispersing factor and GABA synchronize cells of the isolated circadian clock of the cockroach Leucophaea maderae.

作者信息

Schneider Nils-Lasse, Stengl Monika

机构信息

Department of Biology, Animal Physiology, Philipps University of Marburg, D-35032 Marburg, Germany.

出版信息

J Neurosci. 2005 May 25;25(21):5138-47. doi: 10.1523/JNEUROSCI.5138-A-04.2005.

Abstract

Pigment-dispersing factor-immunoreactive circadian pacemaker cells, which arborize in the accessory medulla, control circadian locomotor activity rhythms in Drosophila as well as in the cockroach Leucophaea maderae via unknown mechanisms. Here, we show that circadian pacemaker candidates of the accessory medulla of the cockroach produce regular interspike intervals. Therefore, the membrane potential of the cells oscillates with ultradian periods. Most or all oscillating cells within the accessory medulla are coupled via synaptic and nonsynaptic mechanisms, forming different assemblies. The cells within an assembly share the same ultradian period (interspike interval) and the same phase (timing of spikes), whereas cells between assemblies differ in phase. Apparently, the majority of these assemblies are formed by inhibitory GABAergic synaptic interactions. Application of pigment-dispersing factor phase locked and thereby synchronized different assemblies. The data suggest that pigment-dispersing factor inhibits GABAergic interneurons, resulting in disinhibition and phase locking of their postsynaptic cells, which previously belonged to different assemblies. Our data suggest that phase control of action potential oscillations in the ultradian range is a main task of the circadian pacemaker network. We hypothesize that neuropeptide-dependent phase control is used to gate circadian outputs to locomotor control centers.

摘要

在果蝇以及蟑螂马德拉蜚蠊中,在副髓质形成分支的色素分散因子免疫反应性昼夜节律起搏器细胞,通过未知机制控制昼夜运动活动节律。在此,我们表明蟑螂副髓质的昼夜节律起搏器候选细胞产生规则的峰间期。因此,细胞的膜电位以超日周期振荡。副髓质内的大多数或所有振荡细胞通过突触和非突触机制耦合,形成不同的集合。一个集合内的细胞具有相同的超日周期(峰间期)和相同的相位(峰的时间),而不同集合之间的细胞相位不同。显然,这些集合中的大多数是由抑制性GABA能突触相互作用形成的。色素分散因子的应用使不同集合锁相并同步。数据表明,色素分散因子抑制GABA能中间神经元,导致其突触后细胞去抑制和锁相,这些突触后细胞先前属于不同的集合。我们的数据表明,超日范围内动作电位振荡的相位控制是昼夜节律起搏器网络的主要任务。我们假设神经肽依赖性相位控制用于将昼夜节律输出传递到运动控制中心。

相似文献

2
Gap junctions between accessory medulla neurons appear to synchronize circadian clock cells of the cockroach Leucophaea maderae.
J Neurophysiol. 2006 Mar;95(3):1996-2002. doi: 10.1152/jn.00835.2005. Epub 2005 Nov 16.
3
Extracellular long-term recordings of the isolated accessory medulla, the circadian pacemaker center of the cockroach Leucophaea maderae, reveal ultradian and hint circadian rhythms.
J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2007 Jan;193(1):35-42. doi: 10.1007/s00359-006-0169-7. Epub 2006 Sep 16.
6
Pigment-dispersing hormone shifts the phase of the circadian pacemaker of the cockroach Leucophaea maderae.
J Neurosci. 1997 Jun 1;17(11):4087-93. doi: 10.1523/JNEUROSCI.17-11-04087.1997.
7
Neural organization of the circadian system of the cockroach Leucophaea maderae.
Chronobiol Int. 2003 Jul;20(4):577-91. doi: 10.1081/cbi-120022412.
8
Signaling of pigment-dispersing factor (PDF) in the Madeira cockroach Rhyparobia maderae.
PLoS One. 2014 Sep 30;9(9):e108757. doi: 10.1371/journal.pone.0108757. eCollection 2014.
9
The neuropeptide SIFamide in the brain of three cockroach species.
J Comp Neurol. 2016 May 1;524(7):1337-60. doi: 10.1002/cne.23910. Epub 2015 Nov 23.

引用本文的文献

1
Contribution of membrane-associated oscillators to biological timing at different timescales.
Front Physiol. 2024 Jan 9;14:1243455. doi: 10.3389/fphys.2023.1243455. eCollection 2023.
2
Crickets in the spotlight: exploring the impact of light on circadian behavior.
J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2024 Mar;210(2):267-279. doi: 10.1007/s00359-023-01686-y. Epub 2024 Jan 22.
4
Modulation of Metabolic Hormone Signaling via a Circadian Hormone and Biogenic Amine in .
Int J Mol Sci. 2022 Apr 12;23(8):4266. doi: 10.3390/ijms23084266.
5
Analysis of Pigment-Dispersing Factor Neuropeptides and Their Receptor in a Velvet Worm.
Front Endocrinol (Lausanne). 2020 May 12;11:273. doi: 10.3389/fendo.2020.00273. eCollection 2020.
6
Light input pathways to the circadian clock of insects with an emphasis on the fruit fly Drosophila melanogaster.
J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2020 Mar;206(2):259-272. doi: 10.1007/s00359-019-01379-5. Epub 2019 Nov 5.
7
Beyond spikes: Multiscale computational analysis of long-term recordings in the cockroach circadian clock.
Netw Neurosci. 2019 Sep 1;3(4):944-968. doi: 10.1162/netn_a_00106. eCollection 2019.
8
Signaling of pigment-dispersing factor (PDF) in the Madeira cockroach Rhyparobia maderae.
PLoS One. 2014 Sep 30;9(9):e108757. doi: 10.1371/journal.pone.0108757. eCollection 2014.
9
Dual PDF signaling pathways reset clocks via TIMELESS and acutely excite target neurons to control circadian behavior.
PLoS Biol. 2014 Mar 18;12(3):e1001810. doi: 10.1371/journal.pbio.1001810. eCollection 2014 Mar.
10
Calcium responses of circadian pacemaker neurons of the cockroach Rhyparobia maderae to acetylcholine and histamine.
J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2013 May;199(5):365-74. doi: 10.1007/s00359-013-0800-3. Epub 2013 Feb 28.

本文引用的文献

1
Transplantation of the cockroach circadian pacemaker.
Science. 1982 Apr 2;216(4541):73-5. doi: 10.1126/science.216.4541.73.
4
The circadian clock in the brain: a structural and functional comparison between mammals and insects.
J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2004 Aug;190(8):601-13. doi: 10.1007/s00359-004-0527-2. Epub 2004 May 20.
5
The biological clock: Ca2+ links the pendulum to the hands.
Trends Neurosci. 2003 Dec;26(12):650-3. doi: 10.1016/j.tins.2003.09.012.
6
Bicuculline-insensitive GABA-gated Cl- channels in the larval nervous system of the moth Manduca sexta.
Invert Neurosci. 2003 Nov;5(1):37-43. doi: 10.1007/s10158-003-0026-0. Epub 2003 Nov 8.
8
Drosophila free-running rhythms require intercellular communication.
PLoS Biol. 2003 Oct;1(1):E13. doi: 10.1371/journal.pbio.0000013. Epub 2003 Sep 15.
9
Neural organization of the circadian system of the cockroach Leucophaea maderae.
Chronobiol Int. 2003 Jul;20(4):577-91. doi: 10.1081/cbi-120022412.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验