Department of Neurobiology, Northwestern University, Evanston, Illinois, United States of America.
PLoS Biol. 2014 Mar 18;12(3):e1001810. doi: 10.1371/journal.pbio.1001810. eCollection 2014 Mar.
Molecular circadian clocks are interconnected via neural networks. In Drosophila, PIGMENT-DISPERSING FACTOR (PDF) acts as a master network regulator with dual functions in synchronizing molecular oscillations between disparate PDF(+) and PDF(-) circadian pacemaker neurons and controlling pacemaker neuron output. Yet the mechanisms by which PDF functions are not clear. We demonstrate that genetic inhibition of protein kinase A (PKA) in PDF(-) clock neurons can phenocopy PDF mutants while activated PKA can partially rescue PDF receptor mutants. PKA subunit transcripts are also under clock control in non-PDF DN1p neurons. To address the core clock target of PDF, we rescued per in PDF neurons of arrhythmic per⁰¹ mutants. PDF neuron rescue induced high amplitude rhythms in the clock component TIMELESS (TIM) in per-less DN1p neurons. Complete loss of PDF or PKA inhibition also results in reduced TIM levels in non-PDF neurons of per⁰¹ flies. To address how PDF impacts pacemaker neuron output, we focally applied PDF to DN1p neurons and found that it acutely depolarizes and increases firing rates of DN1p neurons. Surprisingly, these effects are reduced in the presence of an adenylate cyclase inhibitor, yet persist in the presence of PKA inhibition. We have provided evidence for a signaling mechanism (PKA) and a molecular target (TIM) by which PDF resets and synchronizes clocks and demonstrates an acute direct excitatory effect of PDF on target neurons to control neuronal output. The identification of TIM as a target of PDF signaling suggests it is a multimodal integrator of cell autonomous clock, environmental light, and neural network signaling. Moreover, these data reveal a bifurcation of PKA-dependent clock effects and PKA-independent output effects. Taken together, our results provide a molecular and cellular basis for the dual functions of PDF in clock resetting and pacemaker output.
分子生物钟通过神经网络相互连接。在果蝇中,色素扩散因子(PDF)作为一个主网络调节剂,具有双重功能,即在不同的 PDF(+)和 PDF(-)生物钟神经元之间同步分子振荡,并控制生物钟神经元的输出。然而,PDF 功能的机制尚不清楚。我们证明,在 PDF(-)时钟神经元中抑制蛋白激酶 A (PKA)可以模拟 PDF 突变体,而激活的 PKA 可以部分挽救 PDF 受体突变体。PKA 亚基转录本在非 PDF DN1p 神经元中也受生物钟的控制。为了解决 PDF 的核心时钟靶点问题,我们在节律性 per⁰¹突变体的 PDF 神经元中挽救了 per。PDF 神经元的挽救诱导了非 PDF 的 per⁰¹ 果蝇中时钟成分 TIM 的高振幅节律。PDF 或 PKA 抑制的完全缺失也导致非 PDF 神经元中 TIM 水平降低。为了解决 PDF 如何影响起搏神经元的输出,我们将 PDF 局部应用于 DN1p 神经元,发现它使 DN1p 神经元急性去极化并增加其放电率。令人惊讶的是,在存在环腺苷酸酶抑制剂的情况下,这些效应会降低,但在存在 PKA 抑制的情况下仍然存在。我们已经提供了证据表明,PDF 通过 PKA 信号转导重置和同步生物钟,并证明 PDF 对靶神经元具有急性直接兴奋作用,以控制神经元输出。TIM 作为 PDF 信号转导的靶点表明,它是细胞自主时钟、环境光和神经网络信号的多模态整合器。此外,这些数据揭示了 PKA 依赖性时钟效应和 PKA 独立性输出效应的分支。综上所述,我们的结果为 PDF 在时钟重置和起搏输出中的双重功能提供了分子和细胞基础。