Lucyk Scott, Miskolzie Mark, Kotovych George
Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G2.
J Biomol Struct Dyn. 2005 Aug;23(1):77-90. doi: 10.1080/07391102.2005.10507049.
The preferred conformations of the orphan G-protein coupled receptor agonists (des-bromo) neuropeptide B [1-23] and neuropeptide W [1-23], referred to as NPB and NPW, have been determined by (1)H NMR, CD, and molecular modeling. The sequences of NPB and NPW are WYKPAAGHSSYSVGRAAGLLSGL and WYKHVASPRYHTVGRAAGLLMGL, respectively. These are hypothalamic peptides that exert their biological actions on GPR7 and GPR8 receptors. Micellar solutions using the membrane mimetic, sodium dodecylsulphate-d(25) (SDS), were used to mimic a physiological environment for the peptides. The secondary structure of NPB consists of a type II beta-turn involving residues Lys(3) to Ala(6). The C-terminal region of NPB exists in a conformational equilibrium between different secondary structures, including an alpha-helix from residues Arg(15) to Ser(21), and a 3(10)-helix from residues Ser(12) to Ser(21). The N-terminus of NPW exhibits a cation-pi interaction between the Lys(3) side chain and the quadrupole moment of the Trp(1) indole group. At the C-terminus of NPW, a well-defined alpha-helical conformation exists from Arg(15) to Met(21). As NPB and NPW have 91% sequence homology from residues Val(13) to Leu(23), with only residue 21 differing between the two peptides, the similar C-terminal secondary structures of these two peptides are consistent with the sequences. This is supported by the similar CD spectra. The different secondary structures at the N-termini for NPB and NPW point to the importance of the N-terminus in receptor binding. This is consistent with the work of Fujii et al. [J. Biol. Chem. 277, 34010-34016 (2002)] who observed that iodination of the NPB Tyr(2) resulted in decreased agonistic activity at GPR7. In addition, Tanaka et al. [Proc. Natl. Acad. Sci. USA 100, 6251-6256 (2003)] showed that deletion of Trp(1) from NPB or NPW drastically decreased activity at GPR7 for NPB and GPR7 and GPR8 for NPW. Therefore, we postulate that the N-terminus is involved in membrane recognition and receptor binding.
孤儿G蛋白偶联受体激动剂(去溴)神经肽B [1-23]和神经肽W [1-23](分别简称为NPB和NPW)的优势构象已通过核磁共振氢谱(¹H NMR)、圆二色光谱(CD)和分子模拟确定。NPB和NPW的序列分别为WYKPAAGHSSYSVGRAAGLLSGL和WYKHVASPRYHTVGRAAGLLMGL。它们是下丘脑肽,对GPR7和GPR8受体发挥生物学作用。使用膜模拟物十二烷基硫酸钠-d₂₅(SDS)的胶束溶液来模拟肽的生理环境。NPB的二级结构由涉及赖氨酸(Lys)³至丙氨酸(Ala)⁶的II型β-转角组成。NPB的C末端区域存在于不同二级结构之间的构象平衡中,包括从精氨酸(Arg)¹⁵至丝氨酸(Ser)²¹的α-螺旋,以及从丝氨酸¹²至丝氨酸²¹的3-10螺旋。NPW的N末端在赖氨酸³侧链与色氨酸¹吲哚基团的四极矩之间表现出阳离子-π相互作用。在NPW的C末端,从精氨酸¹⁵至甲硫氨酸(Met)²¹存在明确的α-螺旋构象。由于NPB和NPW从缬氨酸(Val)¹³至亮氨酸(Leu)²³有91%的序列同源性,两种肽之间仅21位氨基酸不同,这两种肽相似的C末端二级结构与序列一致。这得到了相似的CD光谱的支持。NPB和NPW在N末端的不同二级结构表明N末端在受体结合中的重要性。这与藤井等人[《生物化学杂志》277, 34010 - 34016 (2002)]的研究结果一致,他们观察到NPB酪氨酸(Tyr)²的碘化导致GPR7的激动活性降低。此外,田中等人[《美国国家科学院院刊》100, 6251 - 6256 (2003)]表明,从NPB或NPW中缺失色氨酸¹会大幅降低NPB对GPR7以及NPW对GPR7和GPR8的活性。因此,我们推测N末端参与膜识别和受体结合。