Suppr超能文献

针对因信息性协变量导致非随机缺失或删失结局的随机试验的简单调整。

Simple adjustments for randomized trials with nonrandomly missing or censored outcomes arising from informative covariates.

作者信息

Baker Stuart G, Fitzmaurice Garrett M, Freedman Laurence S, Kramer Barnett S

机构信息

Biometry Research Group, Division of Cancer Prevention, National Cancer Institute, Bethesda, MD, USA.

出版信息

Biostatistics. 2006 Jan;7(1):29-40. doi: 10.1093/biostatistics/kxi038. Epub 2005 May 27.

Abstract

In randomized trials with missing or censored outcomes, standard maximum likelihood estimates of the effect of intervention on outcome are based on the assumption that the missing-data mechanism is ignorable. This assumption is violated if there is an unobserved baseline covariate that is informative, namely a baseline covariate associated with both outcome and the probability that the outcome is missing or censored. Incorporating informative covariates in the analysis has the desirable result of ameliorating the violation of this assumption. Although this idea of including informative covariates is recognized in the statistics literature, it is not appreciated in the literature on randomized trials. Moreover, to our knowledge, there has been no discussion on how to incorporate informative covariates into a general likelihood-based analysis with partially missing outcomes to estimate the quantities of interest. Our contribution is a simple likelihood-based approach for using informative covariates to estimate the effect of intervention on a partially missing outcome in a randomized trial. The first step is to create a propensity-to-be-missing score for each randomization group and divide the scores into a small number of strata based on quantiles. The second step is to compute stratum-specific estimates of outcome derived from a likelihood-analysis conditional on the informative covariates, so that the missing-data mechanism is ignorable. The third step is to average the stratum-specific estimates and compute the estimated effect of intervention on outcome. We discuss the computations for univariate, survival, and longitudinal outcomes, and present an application involving a randomized study of dual versus triple combinations of HIV-1 reverse transcriptase inhibitors.

摘要

在存在缺失或删失结局的随机试验中,干预对结局影响的标准最大似然估计基于缺失数据机制可忽略这一假设。如果存在一个未观察到的具有信息性的基线协变量,即一个与结局以及结局缺失或删失概率均相关的基线协变量,那么这个假设就会被违背。在分析中纳入具有信息性的协变量会产生改善这一假设违背情况的理想结果。尽管在统计学文献中已经认识到纳入具有信息性协变量这一想法,但在随机试验的文献中却未得到重视。此外,据我们所知,尚未有关于如何将具有信息性的协变量纳入到基于似然性的一般分析中以估计部分缺失结局的感兴趣量的讨论。我们的贡献是一种基于似然性的简单方法,用于在随机试验中利用具有信息性的协变量来估计干预对部分缺失结局的影响。第一步是为每个随机分组创建一个缺失倾向得分,并基于分位数将这些得分划分为少量的层。第二步是计算基于具有信息性协变量的似然性分析得出的层特异性结局估计值,以便缺失数据机制可忽略。第三步是对层特异性估计值求平均值,并计算干预对结局的估计效应。我们讨论了单变量、生存和纵向结局的计算方法,并展示了一个涉及HIV-1逆转录酶抑制剂双重与三重组合随机研究的应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验