Peng Yahong, Little Roderick J A, Raghunathan Trivellore E
Merck Research Laboratories, West Point, Pennsylvania 19486, USA.
Biometrics. 2004 Sep;60(3):598-607. doi: 10.1111/j.0006-341X.2004.00208.x.
Noncompliance is a common problem in experiments involving randomized assignment of treatments, and standard analyses based on intention-to-treat or treatment received have limitations. An attractive alternative is to estimate the Complier-Average Causal Effect (CACE), which is the average treatment effect for the subpopulation of subjects who would comply under either treatment (Angrist, Imbens, and Rubin, 1996, Journal of American Statistical Association 91, 444-472). We propose an extended general location model to estimate the CACE from data with noncompliance and missing data in the outcome and in baseline covariates. Models for both continuous and categorical outcomes and ignorable and latent ignorable (Frangakis and Rubin, 1999, Biometrika 86, 365-379) missing-data mechanisms are developed. Inferences for the models are based on the EM algorithm and Bayesian MCMC methods. We present results from simulations that investigate sensitivity to model assumptions and the influence of missing-data mechanism. We also apply the method to the data from a job search intervention for unemployed workers.
在涉及治疗随机分配的实验中,不依从是一个常见问题,基于意向性治疗或接受治疗情况的标准分析存在局限性。一个有吸引力的替代方法是估计依从者平均因果效应(CACE),即无论接受何种治疗都会依从的那部分亚群体的平均治疗效果(安格里斯特、因本斯和鲁宾,1996年,《美国统计协会杂志》91卷,444 - 472页)。我们提出一个扩展的广义位置模型,用于从不依从以及结局和基线协变量中存在缺失数据的数据中估计CACE。针对连续和分类结局以及可忽略和潜在可忽略(弗兰加基斯和鲁宾,1999年,《生物统计学》86卷,365 - 379页)缺失数据机制构建了模型。对这些模型的推断基于期望最大化(EM)算法和贝叶斯马尔可夫链蒙特卡罗(MCMC)方法。我们展示了模拟结果,这些结果研究了对模型假设的敏感性以及缺失数据机制的影响。我们还将该方法应用于一项针对失业工人的求职干预数据。