Herrera Ana M, McParland Brent E, Bienkowska Agnes, Tait Ross, Paré Peter D, Seow Chun Y
Department of Pathology and Laboratory Medicine, St Paul's Hospital/Providence Health Care, University of British Columbia, 1081 Burrard Street, Vancouver, BC V6Z 1Y6, Canada.
J Cell Sci. 2005 Jun 1;118(Pt 11):2381-92. doi: 10.1242/jcs.02368.
Smooth muscle cells line the walls of hollow organs and control the organ dimension and mechanical function by generating force and changing length. Although significant progress has been made in our understanding of the molecular mechanism of actomyosin interaction that produces sliding of actin (thin) and myosin (thick) filaments in smooth muscle, the sarcomeric structure akin to that in striated muscle, which allows the sliding of contractile filaments to be translated into cell shortening has yet to be elucidated. Here we show evidence from porcine airway smooth muscle that supports a model of malleable sarcomeric structure composed of contractile units assembled in series and in parallel. The geometric organization of the basic building blocks (contractile units) within the assembly and the dimension of individual contractile units can be altered when the muscle cells adapt to different lengths. These structural alterations can account for the different length-force relationships of the muscle obtained at different adapted cell lengths. The structural malleability necessary for length adaptation precludes formation of a permanent filament lattice and explains the lack of aligned filament arrays in registers, which also explains why smooth muscle is 'smooth'.
平滑肌细胞排列在中空器官的壁上,通过产生力量和改变长度来控制器官的大小和机械功能。尽管我们在理解产生平滑肌中肌动蛋白(细)丝和肌球蛋白(粗)丝滑动的肌动球蛋白相互作用的分子机制方面取得了重大进展,但类似于横纹肌中允许收缩丝滑动转化为细胞缩短的肌节结构尚未阐明。在这里,我们展示了来自猪气道平滑肌的证据,支持一种由串联和平行组装的收缩单元组成的可塑肌节结构模型。当肌肉细胞适应不同长度时,组件内基本构建块(收缩单元)的几何组织和单个收缩单元的尺寸可以改变。这些结构改变可以解释在不同适应细胞长度下获得的肌肉不同的长度 - 力关系。长度适应所需的结构可塑性排除了永久细丝晶格的形成,并解释了缺乏对齐的细丝阵列,这也解释了为什么平滑肌是“平滑的”。
Can J Physiol Pharmacol. 2005-10
Can J Physiol Pharmacol. 1997-7
J Appl Physiol (1985). 2011-6-2
Can J Physiol Pharmacol. 2005-10
Can J Physiol Pharmacol. 2007-7
Respir Physiol Neurobiol. 2003-9-16
Am J Physiol Cell Physiol. 2003-8
Front Bioeng Biotechnol. 2025-4-16
Physiol Rev. 2023-4-1
Subcell Biochem. 2022
Eur Phys J E Soft Matter. 2022-4-8
J Gen Physiol. 2021-3-1
Int J Biol Sci. 2020