Ichikawa K, Date S, Kaishima T, Shimojo S
Graduate School of Information Science and Technology, Osaka University, 5-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan.
Methods Inf Med. 2005;44(2):265-9.
In our research on brain function analysis, users require two different simultaneous types of processing: interactive processing to a specific part of data and high-performance batch processing to an entire dataset. The difference between these two types of processing is in whether or not the analysis is for data in the region of interest (ROI). In this study, we propose a Grid portal that has a mechanism to freely assign computing resources to the users on a Grid environment according to the users' two different types of processing requirements.
We constructed a Grid portal which integrates interactive processing and batch processing by the following two mechanisms. First, a job steering mechanism controls job execution based on user-tagged priority among organizations with heterogeneous computing resources. Interactive jobs are processed in preference to batch jobs by this mechanism. Second, a priority-based result delivery mechanism that administrates a rank of data significance.
The portal ensures a turn-around time of interactive processing by the priority-based job controlling mechanism, and provides the users with quality of services (QoS) for interactive processing. The users can access the analysis results of interactive jobs in preference to the analysis results of batch jobs. The Grid portal has also achieved high-performance computation of MEG analysis with batch processing on the Grid environment.
The priority-based job controlling mechanism has been realized to freely assign computing resources to the users' requirements. Furthermore the achievement of high-performance computation contributes greatly to the overall progress of brain science. The portal has thus made it possible for the users to flexibly include the large computational power in what they want to analyze.
在我们关于脑功能分析的研究中,用户需要两种不同类型的同步处理:对数据特定部分的交互式处理以及对整个数据集的高性能批处理。这两种处理类型的区别在于分析是否针对感兴趣区域(ROI)的数据。在本研究中,我们提出了一种网格门户,该门户具有一种机制,可根据用户的两种不同处理需求在网格环境中为用户自由分配计算资源。
我们通过以下两种机制构建了一个集成交互式处理和批处理的网格门户。首先,作业导向机制基于异构计算资源组织之间用户标记的优先级来控制作业执行。通过此机制,交互式作业优先于批处理作业进行处理。其次,基于优先级的结果传递机制管理数据重要性的等级。
该门户通过基于优先级的作业控制机制确保了交互式处理的周转时间,并为用户提供了交互式处理的服务质量(QoS)。用户可以优先访问交互式作业的分析结果,而不是批处理作业的分析结果。该网格门户还在网格环境中通过批处理实现了脑磁图(MEG)分析的高性能计算。
基于优先级的作业控制机制已实现,可根据用户需求自由分配计算资源。此外,高性能计算的实现对脑科学的整体进展有很大贡献。因此,该门户使用户能够灵活地将强大的计算能力纳入他们想要分析的内容中。