Suppr超能文献

在连续式固体-气体生物滤池中,脱水细菌对1-氯丁烷进行非传统水解脱卤作用。

Nonconventional hydrolytic dehalogenation of 1-chlorobutane by dehydrated bacteria in a continuous solid-gas biofilter.

作者信息

Erable Benjamin, Goubet Isabelle, Lamare Sylvain, Seltana Amira, Legoy Marie Dominique, Maugard Thierry

机构信息

Laboratoire de Biotechnologies et de Chimie Bio-organique CNRS FRE 2766, Bâtiment Marie Curie, Université de La Rochelle, Avenue Michel Crépeau, 17042 La Rochelle cedex 1, France.

出版信息

Biotechnol Bioeng. 2005 Aug 5;91(3):304-13. doi: 10.1002/bit.20437.

Abstract

Rhodococcus erythropolis NCIMB 13064 and Xanthobacter autotrophicus GJ10 are able to catalyze the conversion of halogenated hydrocarbons to their corresponding alcohols. These strains are attractive biocatalysts for gas phase remediation of polluted gaseous effluents because of their complementary specificity for short or medium and for mono-, di-, or trisubstituted halogenated hydrocarbons (C2-C8 for Rhodococcus erythropolis and C1-C4 for Xanthobacter autotrophicus). After dehydration, these bacteria can catalyze the hydrolytic dehalogenation of 1-chlorobutane in a nonconventional gas phase system under a controlled water thermodynamic activity (a(w)). This process makes it possible to avoid the problems of solubility and bacterial development due to the presence of water in the traditional biofilters. In the aqueous phase, the dehalogenase activity of Rhodococcus erythropolis is less sensitive to thermal denaturation and the apparent Michaelis-Menten constants at 30 degrees C were 0.4 mM and 2.40 micromol min(-1) g(-1) for Km and Vmax, respectively. For Xanthobacter autotrophicus they were 2.8 mM and 0.35 micromol min(-1) g(-1). In the gas phase, the behavior of dehydrated Xanthobacter autotrophicus cells is different from that observed with Rhododcoccus erythropolis cells. The stability of the dehalogenase activity is markedly lower. It is shown that the HCl produced during the reaction is responsible for this low stability. Contrary to Rhodococcus erythropolis cells, disruption of cell walls does not increase the stability of the dehalogenase activity. The activity and stability of lyophilized Xanthobacter autotrophicus GJ10 cells are dependant on various parameters. Optimal dehalogenase activity was determined for water thermodynamic activity (a(w)) of 0.85. A temperature of 30 degrees C offers the best compromise between activity and stability. The pH control before dehydration plays a role in the ionization state of the dehalogenase in the cells. The apparent Michaelis-Menten constants Km and Vmax for the dehydrated Xanthobacter autotrophicus cells were 0.07 (1-chlorobutane thermodynamic activity) and 0.08 micromol min(-1) g(-1) of cells, respectively. A maximal transformation capacity of 1.4 g of 1-chlorobutane per day was finally obtained using 1g of lyophilized Xanthobacter autotrophicus GJ10 cells.

摘要

红平红球菌NCIMB 13064和自养黄色杆菌GJ10能够催化卤代烃转化为相应的醇。由于它们对短链或中链以及单、二或三取代卤代烃具有互补特异性(红平红球菌作用于C2 - C8,自养黄色杆菌作用于C1 - C4),这些菌株是用于气相修复污染废气的有吸引力的生物催化剂。脱水后,这些细菌可以在受控水热力学活性(a(w))的非传统气相系统中催化1 - 氯丁烷的水解脱卤反应。该过程能够避免传统生物滤池中因水的存在而导致的溶解性和细菌生长问题。在水相中,红平红球菌的脱卤酶活性对热变性不太敏感,30℃时的表观米氏常数Km为0.4 mM,Vmax为2.40 μmol min(-1) g(-1)。自养黄色杆菌的Km和Vmax分别为2.8 mM和0.35 μmol min(-1) g(-1)。在气相中,脱水的自养黄色杆菌细胞的行为与红平红球菌细胞不同。脱卤酶活性的稳定性明显较低。结果表明,反应过程中产生的HCl是导致这种低稳定性的原因。与红平红球菌细胞相反,细胞壁的破坏并不会提高脱卤酶活性的稳定性。冻干的自养黄色杆菌GJ10细胞的活性和稳定性取决于各种参数。确定水热力学活性(a(w))为0.85时脱卤酶活性最佳。30℃的温度在活性和稳定性之间提供了最佳平衡。脱水前控制pH对细胞内脱卤酶的电离状态有影响。脱水的自养黄色杆菌细胞的表观米氏常数Km和Vmax分别为0.07(1 - 氯丁烷热力学活性)和0.08 μmol min(-1) g(-1)细胞。最终,使用1g冻干的自养黄色杆菌GJ10细胞,每天可获得最大转化能力为1.4g的1 - 氯丁烷。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验