Suppr超能文献

共享的脑区而非控制运动时间和顺序的功能连接。

Shared brain areas but not functional connections controlling movement timing and order.

作者信息

Garraux Gaëtan, McKinney Christopher, Wu Tao, Kansaku Kenji, Nolte Guido, Hallett Mark

机构信息

Human Motor Control Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892-1428, USA.

出版信息

J Neurosci. 2005 Jun 1;25(22):5290-7. doi: 10.1523/JNEUROSCI.0340-05.2005.

Abstract

Virtually every aspect of the enormous repertoire of human behaviors is embedded in a sequential context, but brain mechanisms underlying the adjustment of two fundamental dimensions defining a motor sequence (order of a series of movements and intervals separating them) as a function of a given goal are poorly understood. Using functional magnetic resonance imaging, we demonstrate that, at the neuronal level, these tasks can only be distinguished by differences in functional interactions between associative areas of common activation, which included bilateral subcortico-parieto-frontal regions, and two subcortical structures. Activity in these shared associative areas was preferentially coupled with that in right putamen during manipulation of timing and with that in right posterior cerebellum during manipulation of serial order. This finding is important because it provides evidence for an efficient organization of the brain during cognitive control of motor sequences and supports a recently proposed principle according to which the role of brain regions involved in different behavioral tasks without differential alterations in their measured activity depends on changes in their interactions with other connected areas as a function of the tasks.

摘要

人类行为的庞大体系几乎每个方面都嵌入在一个序列背景中,但对于作为特定目标的函数来调整定义运动序列的两个基本维度(一系列动作的顺序以及分隔它们的间隔)背后的脑机制,我们却知之甚少。通过功能磁共振成像,我们证明,在神经元层面,这些任务只能通过共同激活的联合区域之间功能相互作用的差异来区分,这些区域包括双侧皮质下 - 顶叶 - 额叶区域以及两个皮质下结构。在操纵时间时,这些共享联合区域的活动优先与右侧壳核的活动耦合,而在操纵序列顺序时,则优先与右侧后小脑的活动耦合。这一发现很重要,因为它为运动序列认知控制期间大脑的高效组织提供了证据,并支持了最近提出的一个原则,即参与不同行为任务的脑区,在其测量活动没有差异变化的情况下,其作用取决于它们与其他相连区域的相互作用随任务的变化。

相似文献

1
Shared brain areas but not functional connections controlling movement timing and order.
J Neurosci. 2005 Jun 1;25(22):5290-7. doi: 10.1523/JNEUROSCI.0340-05.2005.
2
Dissociating brain regions controlling the temporal and ordinal structure of learned movement sequences.
Eur J Neurosci. 2004 May;19(9):2591-602. doi: 10.1111/j.0953-816X.2004.03269.x.
3
A functional MRI study of motor dysfunction in Friedreich's ataxia.
Brain Res. 2012 Aug 30;1471:138-54. doi: 10.1016/j.brainres.2012.06.035. Epub 2012 Jul 3.
4
Combined visual attention and finger movement effects on human brain representations.
Exp Brain Res. 2001 Oct;140(3):265-79. doi: 10.1007/s002210100796.
7
Information processing in human parieto-frontal circuits during goal-directed bimanual movements.
Neuroimage. 2006 May 15;31(1):264-78. doi: 10.1016/j.neuroimage.2005.11.033. Epub 2006 Feb 7.
8
fMRI investigation of cortical and subcortical networks in the learning of abstract and effector-specific representations of motor sequences.
Neuroimage. 2006 Aug 15;32(2):714-27. doi: 10.1016/j.neuroimage.2006.04.205. Epub 2006 Jun 22.
9
A parametric fMRI investigation of context effects in sensorimotor timing and coordination.
Neuropsychologia. 2007 Mar 2;45(4):673-84. doi: 10.1016/j.neuropsychologia.2006.07.020. Epub 2006 Oct 2.
10
Timing functions of the supplementary motor area: an event-related fMRI study.
Brain Res Cogn Brain Res. 2004 Oct;21(2):206-15. doi: 10.1016/j.cogbrainres.2004.01.005.

引用本文的文献

1
Abnormal activation patterns in MT+ during visual motion perception in major depressive disorder.
Front Psychiatry. 2024 Aug 26;15:1433239. doi: 10.3389/fpsyt.2024.1433239. eCollection 2024.
2
Context-specific and context-invariant computations of interval timing.
Front Neurosci. 2023 Sep 20;17:1249502. doi: 10.3389/fnins.2023.1249502. eCollection 2023.
5
Basal ganglia and cortical networks for sequential ordering and rhythm of complex movements.
Front Hum Neurosci. 2015 Jul 27;9:421. doi: 10.3389/fnhum.2015.00421. eCollection 2015.
6
Motor automaticity in Parkinson's disease.
Neurobiol Dis. 2015 Oct;82:226-234. doi: 10.1016/j.nbd.2015.06.014. Epub 2015 Jun 21.
7
The neural basis of audiomotor entrainment: an ALE meta-analysis.
Front Hum Neurosci. 2014 Sep 30;8:776. doi: 10.3389/fnhum.2014.00776. eCollection 2014.
9
Implicit target substitution and sequencing for lexical tone production in Chinese: an FMRI study.
PLoS One. 2014 Jan 10;9(1):e83126. doi: 10.1371/journal.pone.0083126. eCollection 2014.
10
Timing-dependent modulation of the posterior parietal cortex-primary motor cortex pathway by sensorimotor training.
J Neurophysiol. 2012 Jun;107(11):3190-9. doi: 10.1152/jn.01049.2011. Epub 2012 Mar 21.

本文引用的文献

1
Valid conjunction inference with the minimum statistic.
Neuroimage. 2005 Apr 15;25(3):653-60. doi: 10.1016/j.neuroimage.2004.12.005.
2
CASL fMRI of subcortico-cortical perfusion changes during memory-guided finger sequences.
Neuroimage. 2005 Mar;25(1):122-32. doi: 10.1016/j.neuroimage.2004.11.004. Epub 2005 Jan 5.
3
Interference of left and right cerebellar rTMS with procedural learning.
J Cogn Neurosci. 2004 Nov;16(9):1605-11. doi: 10.1162/0898929042568488.
4
Evidence for distinct cognitive deficits after focal cerebellar lesions.
J Neurol Neurosurg Psychiatry. 2004 Nov;75(11):1524-31. doi: 10.1136/jnnp.2003.018093.
5
Dissociating brain regions controlling the temporal and ordinal structure of learned movement sequences.
Eur J Neurosci. 2004 May;19(9):2591-602. doi: 10.1111/j.0953-816X.2004.03269.x.
6
Neuroimaging studies of working memory: a meta-analysis.
Cogn Affect Behav Neurosci. 2003 Dec;3(4):255-74. doi: 10.3758/cabn.3.4.255.
7
Cortico-subcortical contributions to executive control.
Acta Psychol (Amst). 2004 Feb-Mar;115(2-3):271-89. doi: 10.1016/j.actpsy.2003.12.010.
8
Timing and neural encoding of somatosensory parametric working memory in macaque prefrontal cortex.
Cereb Cortex. 2003 Nov;13(11):1196-207. doi: 10.1093/cercor/bhg100.
9
Interval timing and the encoding of signal duration by ensembles of cortical and striatal neurons.
Behav Neurosci. 2003 Aug;117(4):760-73. doi: 10.1037/0735-7044.117.4.760.
10
Functional connectivity of the medial temporal lobe relates to learning and awareness.
J Neurosci. 2003 Jul 23;23(16):6520-8. doi: 10.1523/JNEUROSCI.23-16-06520.2003.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验