Suppr超能文献

基于FLO11的酿酒酵母气液界面生物膜形成模型。

FLO11-based model for air-liquid interfacial biofilm formation by Saccharomyces cerevisiae.

作者信息

Zara Severino, Bakalinsky Alan T, Zara Giacomo, Pirino Giorgia, Demontis Maria Antonietta, Budroni Marilena

机构信息

Dipartimento di Scienze Ambientali Agrarie e Biotecnologie Agroalimentari, Sezione di Microbiologia Generale ed Applicata, Università di Sassari, Viale Italia 39, 07100 Sassari, Italy.

出版信息

Appl Environ Microbiol. 2005 Jun;71(6):2934-9. doi: 10.1128/AEM.71.6.2934-2939.2005.

Abstract

Sardinian wine strains of Saccharomyces cerevisiae used to make sherry-like wines form a biofilm at the air-liquid interface at the end of ethanolic fermentation, when grape sugar is depleted and further growth becomes dependent on access to oxygen. Here, we show that FLO11, which encodes a hydrophobic cell wall glycoprotein, is required for the air-liquid interfacial biofilm and that biofilm cells have a buoyant density greater than the suspending medium. We propose a model for biofilm formation based on an increase in cell surface hydrophobicity occurring at the diauxic shift. This increase leads to formation of multicellular aggregates that effectively entrap carbon dioxide, providing buoyancy. A visible biofilm appears when a sufficient number of hydrophobic cell aggregates are carried to and grow on the liquid surface.

摘要

用于酿造类似雪利酒的葡萄酒的撒丁岛酿酒酵母菌株,在乙醇发酵结束时,当葡萄糖耗尽且进一步生长依赖于氧气供应时,会在气液界面形成生物膜。在此,我们表明,编码一种疏水性细胞壁糖蛋白的FLO11是气液界面生物膜形成所必需的,并且生物膜细胞的浮力密度大于悬浮培养基。我们基于在双相转变时发生的细胞表面疏水性增加,提出了一个生物膜形成模型。这种增加导致形成多细胞聚集体,有效地捕获二氧化碳,从而提供浮力。当足够数量的疏水性细胞聚集体被带到液体表面并在其上生长时,就会出现可见的生物膜。

相似文献

1
FLO11-based model for air-liquid interfacial biofilm formation by Saccharomyces cerevisiae.
Appl Environ Microbiol. 2005 Jun;71(6):2934-9. doi: 10.1128/AEM.71.6.2934-2939.2005.
2
FLO11 is the primary factor in flor formation caused by cell surface hydrophobicity in wild-type flor yeast.
Biosci Biotechnol Biochem. 2006 Mar;70(3):660-6. doi: 10.1271/bbb.70.660.
3
Btn2p is involved in ethanol tolerance and biofilm formation in flor yeast.
FEMS Yeast Res. 2008 Nov;8(7):1127-36. doi: 10.1111/j.1567-1364.2008.00397.x. Epub 2008 Jun 12.
4
FLO11 Gene Is Involved in the Interaction of Flor Strains of Saccharomyces cerevisiae with a Biofilm-Promoting Synthetic Hexapeptide.
Appl Environ Microbiol. 2013 Oct;79(19):6023-32. doi: 10.1128/AEM.01647-13. Epub 2013 Jul 26.
6
FLO11 is essential for pellicle formation by wild pellicle-forming yeasts isolated from contaminated wines.
J Biosci Bioeng. 2011 Jan;111(1):7-9. doi: 10.1016/j.jbiosc.2010.09.006. Epub 2010 Oct 13.
7
FLO11 expression and lipid biosynthesis are required for air-liquid biofilm formation in a Saccharomyces cerevisiae flor strain.
FEMS Yeast Res. 2012 Nov;12(7):864-6. doi: 10.1111/j.1567-1364.2012.00831.x. Epub 2012 Aug 6.
8
The role of FLO11 in Saccharomyces cerevisiae biofilm development in a laboratory based flow-cell system.
FEMS Yeast Res. 2007 May;7(3):372-9. doi: 10.1111/j.1567-1364.2006.00189.x. Epub 2007 Jan 19.
9
Flor yeasts of Saccharomyces cerevisiae--their ecology, genetics and metabolism.
Int J Food Microbiol. 2013 Oct 15;167(2):269-75. doi: 10.1016/j.ijfoodmicro.2013.08.021. Epub 2013 Sep 10.
10

引用本文的文献

3
Biotechnological applications of biofilms formed by osmotolerant and halotolerant yeasts.
Appl Microbiol Biotechnol. 2023 Jul;107(14):4409-4427. doi: 10.1007/s00253-023-12589-y. Epub 2023 May 26.
4
Sticking to the Subject: Multifunctionality in Microbial Adhesins.
J Fungi (Basel). 2023 Mar 29;9(4):419. doi: 10.3390/jof9040419.
5
FLO11, a Developmental Gene Conferring Impressive Adaptive Plasticity to the Yeast .
Pathogens. 2021 Nov 19;10(11):1509. doi: 10.3390/pathogens10111509.
6
The Flo Adhesin Family.
Pathogens. 2021 Oct 28;10(11):1397. doi: 10.3390/pathogens10111397.
7
Spatially structured yeast communities: Understanding structure formation and regulation with omics tools.
Comput Struct Biotechnol J. 2021 Oct 9;19:5613-5621. doi: 10.1016/j.csbj.2021.10.012. eCollection 2021.
8
Study of potential probiotic and biotechnological properties of non-Saccharomyces yeasts from fruit Brazilian ecosystems.
Braz J Microbiol. 2021 Dec;52(4):2129-2144. doi: 10.1007/s42770-021-00541-z. Epub 2021 Oct 1.
10
Shedding Light on the Formation and Structure of Kombucha Biofilm Using Two-Photon Fluorescence Microscopy.
Front Microbiol. 2021 Aug 4;12:725379. doi: 10.3389/fmicb.2021.725379. eCollection 2021.

本文引用的文献

1
Conversion of Wine Strains of Saccharomyces cerevisiae to Heterothallism.
Appl Environ Microbiol. 1990 Apr;56(4):849-57. doi: 10.1128/aem.56.4.849-857.1990.
2
FLO11 is essential for flor formation caused by the C-terminal deletion of NRG1 in Saccharomyces cerevisiae.
FEMS Microbiol Lett. 2004 Aug 15;237(2):425-30. doi: 10.1016/j.femsle.2004.07.012.
3
Genetic and epigenetic regulation of the FLO gene family generates cell-surface variation in yeast.
Cell. 2004 Feb 6;116(3):405-15. doi: 10.1016/s0092-8674(04)00118-7.
4
Yeast flocculation: what brewers should know.
Appl Microbiol Biotechnol. 2003 May;61(3):197-205. doi: 10.1007/s00253-002-1200-8. Epub 2003 Jan 25.
6
The Awa1 gene is required for the foam-forming phenotype and cell surface hydrophobicity of sake yeast.
Appl Environ Microbiol. 2002 Apr;68(4):2018-25. doi: 10.1128/AEM.68.4.2018-2025.2002.
8
Bakers' yeast, a model for fungal biofilm formation.
Science. 2001 Feb 2;291(5505):878-81. doi: 10.1126/science.291.5505.878.
9
Identification of a 49-kDa hydrophobic cell wall mannoprotein present in velum yeast which may be implicated in velum formation.
FEMS Microbiol Lett. 2000 Apr 15;185(2):147-50. doi: 10.1111/j.1574-6968.2000.tb09053.x.
10
Analysis of the genes activated by the FLO8 gene in Saccharomyces cerevisiae.
Curr Genet. 1999 Nov;36(5):256-61. doi: 10.1007/s002940050498.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验