Bejjani Bassem A, Theisen Aaron P, Ballif Blake C, Shaffer Lisa G
Signature Genomic Laboratories, 44 West 6th Avenue, Suite 202, Spokane, WA 99204, USA.
Expert Rev Mol Diagn. 2005 May;5(3):421-9. doi: 10.1586/14737159.5.3.421.
The sequencing of the human genome and development of high-throughput microarray technologies have enhanced the detection of copy number alterations in cancer research and the study of constitutional chromosomal abnormalities. Microarray-based comparative genomic hybridization (array CGH) has integrated molecular and traditional cytogenetics and has begun to impact the clinician's approach to medical genetics. Clinical applications of array CGH may define new genetic syndromes, expand the phenotype of existing syndromes and characterize a genomic signature of some cancers. As array CGH becomes the initial diagnostic approach for the investigation of constitutional and acquired chromosomal abnormalities, the combination of bioinformatics, robotics and microarray technology will set the stage for a new generation of high-resolution and high-throughput tools for genetic analysis, diagnosis and gene discovery.
人类基因组测序以及高通量微阵列技术的发展,提升了癌症研究中拷贝数改变的检测水平以及对染色体结构异常的研究。基于微阵列的比较基因组杂交技术(array CGH)融合了分子遗传学与传统细胞遗传学,已开始影响临床医生处理医学遗传学问题的方式。array CGH的临床应用可能会定义新的遗传综合征,拓展现有综合征的表型,并描绘某些癌症的基因组特征。随着array CGH成为检测染色体结构异常和后天染色体异常的初始诊断方法,生物信息学、机器人技术和微阵列技术的结合将为新一代用于遗传分析、诊断和基因发现的高分辨率、高通量工具奠定基础。