Wang Xingxiang, Li Qingman, Hu Huafeng, Zhang Taolin, Zhou Yiyong
Institute of Soil Science, Chinese Academy of Sciences, P.O. X 821, 71 East Beijing Road, Nanjing 210008, People's Republic of China.
J Colloid Interface Sci. 2005 Oct 15;290(2):481-8. doi: 10.1016/j.jcis.2005.04.066.
Kaolinite is a dominant clay mineral in the soils in tropical and subtropical regions, and its dissolution has an influence on a variety of soil properties. In this work, kaolinite dissolution induced by three kinds of low-molecular-weight organic acid, i.e., citric, oxalic, and malic acids, was evaluated under far-from-equilibrium conditions. The rates of kaolinite dissolution depended on the kind and concentration of organic acids, with the sequence R(oxalate)>R(citrate)>R(malate). Chemical calculation showed the change in concentration of organic ligand relative to change in concentration of organic acid in suspensions of kaolinite and organic acid. The effect of organic acid on kaolinite dissolution was modeled by species of organic anionic ligand. For oxalic acid, L(2-)(oxalic) and HL(-)(oxalic) jointly enhanced the dissolution of kaolinite, but for malic and citric acids, HL(-)(malic) and H2L-(citric) made a higher contribution to the total dissolution rate of kaolinite than L(2-)(malic) and L(3-)(citric), respectively. For oxalic acid, the proposed model was R(Si)=1.89x10(-12)x[(25x)/(1+25x)]+1.93x10(-12)x[(1990x1)/(1+1990x1)] (R2=0.9763), where x and x1 denote the concentrations of HL(oxalic) and L(oxalic), respectively, and x1=10(-3.81)xx/[H+]. For malic acid, the model was R(Si)=4.79x10(-12)x[(328x)/(1+328x)]+1.67x10(-13)x[(1149x1)/(1+1149x1)] (R2=0.9452), where x and x1 denote the concentrations of HL(malic) and L(malic), respectively, and x1=10(-5.11)xx/[H+], and for citric acid, the model was R(Si)=4.73x10(-12)x[(845x)/(1+845x)]+4.68x10(-12)x[(2855x1)/(1+2855x1)] (R2=0.9682), where x and x1 denote the concentrations of H2L(citric) and L(citric), respectively, and [Formula: see text] .
高岭石是热带和亚热带地区土壤中的主要粘土矿物,其溶解对多种土壤性质有影响。在本研究中,评估了在远离平衡条件下,柠檬酸、草酸和苹果酸这三种低分子量有机酸诱导的高岭石溶解情况。高岭石的溶解速率取决于有机酸的种类和浓度,顺序为R(草酸盐)>R(柠檬酸盐)>R(苹果酸盐)。化学计算表明了高岭石与有机酸悬浮液中有机配体浓度相对于有机酸浓度的变化。通过有机阴离子配体种类对有机酸对高岭石溶解的影响进行了建模。对于草酸,L(2 -)(草酸)和HL(-)(草酸)共同促进了高岭石的溶解,但对于苹果酸和柠檬酸,HL(-)(苹果酸)和H2L-(柠檬酸)分别比L(2 -)(苹果酸)和L(3 -)(柠檬酸)对高岭石的总溶解速率贡献更大。对于草酸,提出的模型为R(Si)=1.89x10(-12)x[(25x)/(1 + 25x)] + 1.93x10(-12)x[(1990x1)/(1 + 1990x1)] (R2 = 0.9763),其中x和x1分别表示HL(草酸)和L(草酸)的浓度,且x1 = 10(-3.81)xx/[H+]。对于苹果酸,模型为R(Si)=4.79x10(-12)x[(328x)/(1 + 328x)] + 1.67x10(-13)x[(1149x1)/(1 + 1149x1)] (R2 = 0.9452),其中x和x1分别表示HL(苹果酸)和L(苹果酸)的浓度,且x1 = 10(-5.11)xx/[H+],对于柠檬酸,模型为R(Si)=4.73x10(-12)x[(845x)/(1 + 845x)] + 4.68x10(-12)x[(2855x1)/(1 + 2855x1)] (R2 = 0.9682),其中x和x1分别表示H2L(柠檬酸)和L(柠檬酸)的浓度,且[公式:见原文] 。