Yoon Sungho, Lippard Stephen J
Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
J Am Chem Soc. 2005 Jun 15;127(23):8386-97. doi: 10.1021/ja0512531.
Carboxylate-bridged high-spin diiron(II) complexes with distinctive electronic transitions were prepared by using 4-cyanopyridine (4-NCC(5)H(4)N) ligands to shift the charge-transfer bands to the visible region of the absorption spectrum. This property facilitated quantitation of water-dependent equilibria in the carboxylate-rich diiron(II) complex, [Fe(2)(mu-O(2)CAr(Tol))(4)(4-NCC(5)H(4)N)(2)] (1), where (-)O(2)CAr(Tol) is 2,6-di-(p-tolyl)benzoate. Addition of water to 1 reversibly shifts two of the bridging carboxylate ligands to chelating terminal coordination positions, converting the structure from a paddlewheel to a windmill geometry and generating [Fe(2)(mu-O(2)CAr(Tol))(2)(O(2)CAr(Tol))(2)(4-NCC(5)H(4)N)(2)(H(2)O)(2)] (3). This process is temperature dependent in solution, rendering the system thermochromic. Quantitative treatment of the temperature-dependent spectroscopic changes over the temperature range from 188 to 298 K in CH(2)Cl(2) afforded thermodynamic parameters for the interconversion of 1 and 3. Stopped flow kinetic studies revealed that water reacts with the diiron(II) center ca. 1000 time faster than dioxygen and that the water-containing diiron(II) complex reacts with dioxygen ca. 10 times faster than anhydrous analogue 1. Addition of {H(OEt(2))(2)}{B}, where B(-) is tetrakis(3,5-di(trifluoromethyl)phenyl)borate, to 1 converts it to Fe(2)(mu-O(2)CAr(Tol))(3)(4-NCC(5)H(4)N)(2) (5), which was also structurally characterized. Mossbauer spectroscopic investigations of solid samples of 1, 3, and 5, in conjunction with several literature values for high-spin iron(II) complexes in an oxygen-rich coordination environment, establish a correlation between isomer shift, coordination number, and N/O composition. The products of oxygenating 1 in CH(2)Cl(2) were identified crystallographically to be [Fe(2)(mu-OH)(2)(mu-O(2)CAr(Tol))(2)(O(2)CAr(Tol))(2)(4-NCC(5)H(4)N)(2)].2(HO(2)CAr(Tol)) (6) and [Fe(6)(mu-O)(2)(mu-OH)(4)(mu-O(2)CAr(Tol))(6)(4-NCC(5)H(4)N)(4)Cl(2)] (7).
通过使用4-氰基吡啶(4-NCC₅H₄N)配体将电荷转移带移至吸收光谱的可见光区域,制备了具有独特电子跃迁的羧酸盐桥连高自旋二价铁配合物。此性质有助于定量分析富含羧酸盐的二价铁配合物[Fe₂(μ-O₂CAr(Tol))₄(4-NCC₅H₄N)₂](1)中与水相关的平衡,其中(-)O₂CAr(Tol)为2,6-二(对甲苯基)苯甲酸酯。向1中加水会使两个桥连羧酸盐配体可逆地转变为螯合末端配位位置,将结构从桨轮状转变为风车状几何结构,并生成[Fe₂(μ-O₂CAr(Tol))₂(O₂CAr(Tol))₂(4-NCC₅H₄N)₂(H₂O)₂](3)。此过程在溶液中取决于温度,使该体系具有热致变色性。对二氯甲烷中188至298 K温度范围内与温度相关的光谱变化进行定量处理,得到了1和3相互转化的热力学参数。停流动力学研究表明,水与二价铁中心的反应速度比氧气快约1000倍,且含二价铁水合物的配合物与氧气的反应速度比无水类似物1快约10倍。向1中加入{H(OEt₂)₂}{B}(其中B⁻为四(3,5-二(三氟甲基)苯基)硼酸盐),可将其转化为Fe₂(μ-O₂CAr(Tol))₃(4-NCC₅H₄N)₂(5),其结构也已得到表征。对1、3和5的固体样品进行穆斯堡尔光谱研究,并结合富氧配位环境中高自旋铁(II)配合物的几个文献值,建立了异构体位移、配位数和N/O组成之间的相关性。通过晶体学确定了1在二氯甲烷中氧化产物为[Fe₂(μ-OH)₂(μ-O₂CAr(Tol))₂(O₂CAr(Tol))₂(4-NCC₅H₄N)₂]·2(HO₂CAr(Tol))(6)和[Fe₆(μ-O)₂(μ-OH)₄(μ-O₂CAr(Tol))₆(4-NCC₅H₄N)₄Cl₂](7)。