Suppr超能文献

当前模拟双铁酶活性位点用于生物模拟合成配合物激活氧气的挑战。

Current challenges of modeling diiron enzyme active sites for dioxygen activation by biomimetic synthetic complexes.

机构信息

Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.

出版信息

Chem Soc Rev. 2010 Aug;39(8):2768-79. doi: 10.1039/c003079c. Epub 2010 May 20.

Abstract

This tutorial review describes recent progress in modeling the active sites of carboxylate-rich non-heme diiron enzymes that activate dioxygen to carry out several key reactions in Nature. The chemistry of soluble methane monooxygenase, which catalyzes the selective oxidation of methane to methanol, is of particular interest for (bio)technological applications. Novel synthetic diiron complexes that mimic structural, and, to a lesser extent, functional features of these diiron enzymes are discussed. The chemistry of the enzymes is also briefly summarized. A particular focus of this review is on models that mimic characteristics of the diiron systems that were previously not emphasized, including systems that contain (i) aqua ligands, (ii) different substrates tethered to the ligand framework, (iii) dendrimers attached to carboxylates to mimic the protein environment, (iv) two N-donors in a syn-orientation with respect to the iron-iron vector, and (v) a N-rich ligand environment capable of accessing oxygenated high-valent diiron intermediates.

摘要

本教程综述描述了近年来在模拟富含羧酸盐的非血红素双铁酶活性位点方面的进展,这些酶能激活氧气来进行自然界中的几种关键反应。具有(生物)技术应用前景的可溶性甲烷单加氧酶(可催化甲烷的选择性氧化生成甲醇)的化学性质尤其受到关注。本文讨论了一些新型的合成双铁配合物,这些配合物模拟了这些双铁酶的结构和在较小程度上的功能特征。该酶的化学性质也简要总结。本综述的一个特别关注点是模拟以前未强调的双铁系统特征的模型,包括含有 (i) 水配体、(ii) 连接到配体框架上的不同底物、(iii) 连接到羧酸盐上以模拟蛋白质环境的树状聚合物、(iv) 相对于铁-铁载体呈顺式取向的两个 N-供体,以及 (v) 能够进入含氧高价态双铁中间体的富 N 配体环境的模型。

相似文献

1
Current challenges of modeling diiron enzyme active sites for dioxygen activation by biomimetic synthetic complexes.
Chem Soc Rev. 2010 Aug;39(8):2768-79. doi: 10.1039/c003079c. Epub 2010 May 20.
2
Dioxygen Activation by Nonheme Diiron Enzymes: Diverse Dioxygen Adducts, High-Valent Intermediates, and Related Model Complexes.
Chem Rev. 2018 Mar 14;118(5):2554-2592. doi: 10.1021/acs.chemrev.7b00457. Epub 2018 Feb 5.
4
μ-Nitrido Diiron Macrocyclic Platform: Particular Structure for Particular Catalysis.
Acc Chem Res. 2016 Apr 19;49(4):583-93. doi: 10.1021/acs.accounts.5b00458. Epub 2016 Mar 11.
7
Recent Insights into the Reaction Mechanisms of Non-Heme Diiron Enzymes Containing Oxoiron(IV) Complexes.
Chembiochem. 2025 Feb 1;26(3):e202400788. doi: 10.1002/cbic.202400788. Epub 2024 Nov 25.
9
Synthetic mononuclear nonheme iron-oxygen intermediates.
Acc Chem Res. 2015 Aug 18;48(8):2415-23. doi: 10.1021/acs.accounts.5b00218. Epub 2015 Jul 23.
10
Dioxygen activation in soluble methane monooxygenase.
Acc Chem Res. 2011 Apr 19;44(4):280-8. doi: 10.1021/ar1001473. Epub 2011 Mar 10.

引用本文的文献

3
Metal-α-Helix Peptide Frameworks.
J Am Chem Soc. 2025 May 21;147(20):17433-17447. doi: 10.1021/jacs.5c04078. Epub 2025 May 6.
4
Design of Zn-Binding Peptide(s) from Protein Fragments.
Chembiochem. 2025 Apr 1;26(7):e202401014. doi: 10.1002/cbic.202401014. Epub 2025 Feb 26.
5
Controlling the Size of Molecular Copper Clusters Supported by a Multinucleating Macrocycle.
Inorg Chem. 2024 Sep 30;63(39):18332-18344. doi: 10.1021/acs.inorgchem.4c02416. Epub 2024 Sep 18.
6
Redox Processes Involving Oxygen: The Surprising Influence of Redox-Inactive Lewis Acids.
JACS Au. 2024 Jan 22;4(2):344-368. doi: 10.1021/jacsau.3c00675. eCollection 2024 Feb 26.
7
10-fold faster C-H bond hydroxylation by a Co(µ-O) complex [via a Co(µ-O)(µ-OH) intermediate] versus its FeFe analog.
Proc Natl Acad Sci U S A. 2023 Dec 19;120(51):e2307950120. doi: 10.1073/pnas.2307950120. Epub 2023 Dec 12.
8
Selective methane oxidation by molecular iron catalysts in aqueous medium.
Nature. 2023 Apr;616(7957):476-481. doi: 10.1038/s41586-023-05821-2. Epub 2023 Apr 5.
9
Enzyme-inspired catalyst helps to convert methane into methanol.
Nature. 2023 Apr 5. doi: 10.1038/d41586-023-00810-x.
10
Photocatalytic generation of a non-heme Fe(iii)-hydroperoxo species with O in water for the oxygen atom transfer reaction.
Chem Sci. 2022 Sep 28;13(42):12332-12339. doi: 10.1039/d2sc03129a. eCollection 2022 Nov 2.

本文引用的文献

1
Dioxygen Activation and Methane Hydroxylation by Soluble Methane Monooxygenase: A Tale of Two Irons and Three Proteins.
Angew Chem Int Ed Engl. 2001 Aug 3;40(15):2782-2807. doi: 10.1002/1521-3773(20010803)40:15<2782::AID-ANIE2782>3.0.CO;2-P.
2
A Bulky Benzoate Ligand for Modeling the Carboxylate-Rich Active Sites of Non-Heme Diiron Enzymes.
J Am Chem Soc. 1998 Dec 30;120(51):13531-13532. doi: 10.1021/ja983333t.
5
9-Triptycenecarboxylate-Bridged Diiron(II) Complexes: Capture of the Paddlewheel Geometric Isomer.
J Mol Struct. 2008 Nov 12;890(1-3):317-327. doi: 10.1016/j.molstruc.2008.05.030.
6
A diiron(IV) complex that cleaves strong C-H and O-H bonds.
Nat Chem. 2009 May;1(2):145-50. doi: 10.1038/nchem.162.
9
Human deoxyhypusine hydroxylase, an enzyme involved in regulating cell growth, activates O2 with a nonheme diiron center.
Proc Natl Acad Sci U S A. 2009 Sep 1;106(35):14814-9. doi: 10.1073/pnas.0904553106. Epub 2009 Aug 19.
10
Desaturases: emerging models for understanding functional diversification of diiron-containing enzymes.
J Biol Chem. 2009 Jul 10;284(28):18559-63. doi: 10.1074/jbc.R900009200. Epub 2009 Apr 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验