Suppr超能文献

相似文献

1
Current challenges of modeling diiron enzyme active sites for dioxygen activation by biomimetic synthetic complexes.
Chem Soc Rev. 2010 Aug;39(8):2768-79. doi: 10.1039/c003079c. Epub 2010 May 20.
2
Dioxygen Activation by Nonheme Diiron Enzymes: Diverse Dioxygen Adducts, High-Valent Intermediates, and Related Model Complexes.
Chem Rev. 2018 Mar 14;118(5):2554-2592. doi: 10.1021/acs.chemrev.7b00457. Epub 2018 Feb 5.
4
μ-Nitrido Diiron Macrocyclic Platform: Particular Structure for Particular Catalysis.
Acc Chem Res. 2016 Apr 19;49(4):583-93. doi: 10.1021/acs.accounts.5b00458. Epub 2016 Mar 11.
7
Recent Insights into the Reaction Mechanisms of Non-Heme Diiron Enzymes Containing Oxoiron(IV) Complexes.
Chembiochem. 2025 Feb 1;26(3):e202400788. doi: 10.1002/cbic.202400788. Epub 2024 Nov 25.
9
Synthetic mononuclear nonheme iron-oxygen intermediates.
Acc Chem Res. 2015 Aug 18;48(8):2415-23. doi: 10.1021/acs.accounts.5b00218. Epub 2015 Jul 23.
10
Dioxygen activation in soluble methane monooxygenase.
Acc Chem Res. 2011 Apr 19;44(4):280-8. doi: 10.1021/ar1001473. Epub 2011 Mar 10.

引用本文的文献

3
Metal-α-Helix Peptide Frameworks.
J Am Chem Soc. 2025 May 21;147(20):17433-17447. doi: 10.1021/jacs.5c04078. Epub 2025 May 6.
4
Design of Zn-Binding Peptide(s) from Protein Fragments.
Chembiochem. 2025 Apr 1;26(7):e202401014. doi: 10.1002/cbic.202401014. Epub 2025 Feb 26.
5
Controlling the Size of Molecular Copper Clusters Supported by a Multinucleating Macrocycle.
Inorg Chem. 2024 Sep 30;63(39):18332-18344. doi: 10.1021/acs.inorgchem.4c02416. Epub 2024 Sep 18.
6
Redox Processes Involving Oxygen: The Surprising Influence of Redox-Inactive Lewis Acids.
JACS Au. 2024 Jan 22;4(2):344-368. doi: 10.1021/jacsau.3c00675. eCollection 2024 Feb 26.
7
10-fold faster C-H bond hydroxylation by a Co(µ-O) complex [via a Co(µ-O)(µ-OH) intermediate] versus its FeFe analog.
Proc Natl Acad Sci U S A. 2023 Dec 19;120(51):e2307950120. doi: 10.1073/pnas.2307950120. Epub 2023 Dec 12.
8
Selective methane oxidation by molecular iron catalysts in aqueous medium.
Nature. 2023 Apr;616(7957):476-481. doi: 10.1038/s41586-023-05821-2. Epub 2023 Apr 5.
9
Enzyme-inspired catalyst helps to convert methane into methanol.
Nature. 2023 Apr 5. doi: 10.1038/d41586-023-00810-x.
10
Photocatalytic generation of a non-heme Fe(iii)-hydroperoxo species with O in water for the oxygen atom transfer reaction.
Chem Sci. 2022 Sep 28;13(42):12332-12339. doi: 10.1039/d2sc03129a. eCollection 2022 Nov 2.

本文引用的文献

1
Dioxygen Activation and Methane Hydroxylation by Soluble Methane Monooxygenase: A Tale of Two Irons and Three Proteins.
Angew Chem Int Ed Engl. 2001 Aug 3;40(15):2782-2807. doi: 10.1002/1521-3773(20010803)40:15<2782::AID-ANIE2782>3.0.CO;2-P.
2
A Bulky Benzoate Ligand for Modeling the Carboxylate-Rich Active Sites of Non-Heme Diiron Enzymes.
J Am Chem Soc. 1998 Dec 30;120(51):13531-13532. doi: 10.1021/ja983333t.
5
9-Triptycenecarboxylate-Bridged Diiron(II) Complexes: Capture of the Paddlewheel Geometric Isomer.
J Mol Struct. 2008 Nov 12;890(1-3):317-327. doi: 10.1016/j.molstruc.2008.05.030.
6
A diiron(IV) complex that cleaves strong C-H and O-H bonds.
Nat Chem. 2009 May;1(2):145-50. doi: 10.1038/nchem.162.
9
Human deoxyhypusine hydroxylase, an enzyme involved in regulating cell growth, activates O2 with a nonheme diiron center.
Proc Natl Acad Sci U S A. 2009 Sep 1;106(35):14814-9. doi: 10.1073/pnas.0904553106. Epub 2009 Aug 19.
10
Desaturases: emerging models for understanding functional diversification of diiron-containing enzymes.
J Biol Chem. 2009 Jul 10;284(28):18559-63. doi: 10.1074/jbc.R900009200. Epub 2009 Apr 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验