Suppr超能文献

对TRANSFAC数据库的统计分析。

A statistical analysis of the TRANSFAC database.

作者信息

Fogel Gary B, Weekes Dana G, Varga Gabor, Dow Ernst R, Craven Andrew M, Harlow Harry B, Su Eric W, Onyia Jude E, Su Chen

机构信息

Natural Selection, Inc., 3333 N. Torrey Pines Ct., Suite 200, La Jolla, CA 92037, USA.

出版信息

Biosystems. 2005 Aug;81(2):137-54. doi: 10.1016/j.biosystems.2005.03.003.

Abstract

Transcription factors are key regulatory elements that control gene expression. The TRANSFAC database represents the largest repository for experimentally derived transcription factor binding sites (TFBS). Understanding TFBS, which are typically conserved during evolution, helps us identify genomic regions related to human health and disease, and regions that might be predictive of patient outcomes. Here we present a statistical analysis of all TFBS in the TRANSFAC database. Our analysis suggests that current definition of TFBS core regions in TRANSFAC should be re-examined so as to capture a more precise notion of "cores." We offer insight into more appropriate definitions of TFBS consensus sequences and core regions. These revised definitions provide a better understanding of the nature of transcription factor-DNA binding and assist with developing algorithms for de novo TFBS discovery as well as finding novel variants of known TFBS.

摘要

转录因子是控制基因表达的关键调控元件。TRANSFAC数据库是实验得出的转录因子结合位点(TFBS)的最大存储库。了解通常在进化过程中保守的TFBS,有助于我们识别与人类健康和疾病相关的基因组区域,以及可能预测患者预后的区域。在此,我们对TRANSFAC数据库中的所有TFBS进行了统计分析。我们的分析表明,TRANSFAC中TFBS核心区域的当前定义应重新审视,以便更精确地把握“核心”概念。我们深入探讨了TFBS共有序列和核心区域更合适的定义。这些修订后的定义能更好地理解转录因子与DNA结合的本质,并有助于开发从头发现TFBS的算法以及寻找已知TFBS的新变体。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验