Rahtu Esa, Salo Mikko, Heikkilä Janne
Machine Vision Group, Infotech Oulu, Finland.
IEEE Trans Pattern Anal Mach Intell. 2005 Jun;27(6):908-18. doi: 10.1109/TPAMI.2005.111.
This paper presents a new affine invariant image transform called Multiscale Autoconvolution (MSA). The proposed transform is based on a probabilistic interpretation of the image function. The method is directly applicable to isolated objects and does not require extraction of boundaries or interest points, and the computational load is significantly reduced using the Fast Fourier Transform. The transform values can be used as descriptors for affine invariant pattern classification and, in this article, we illustrate their performance in various object classification tasks. As shown by a comparison with other affine invariant techniques, the new method appears to be suitable for problems where image distortions can be approximated with affine transformations.
本文提出了一种名为多尺度自卷积(MSA)的新的仿射不变图像变换。所提出的变换基于图像函数的概率解释。该方法可直接应用于孤立物体,无需提取边界或兴趣点,并且使用快速傅里叶变换可显著降低计算量。变换值可用作仿射不变模式分类的描述符,在本文中,我们展示了它们在各种物体分类任务中的性能。与其他仿射不变技术的比较表明,新方法似乎适用于图像失真可通过仿射变换近似的问题。