Sun Hongmao
Discovery Chemistry, Hoffmann-La Roche Inc., Nutley, New Jersey 07110, USA.
J Med Chem. 2005 Jun 16;48(12):4031-9. doi: 10.1021/jm050180t.
Multidrug resistance (MDR), the ability of cancer cells to become simultaneously resistant to different drugs, remains an unsolved challenge in cancer chemotherapy. The use of MDR reversal (MDRR) agents is a promising approach to overcome this problem. For the design and development of such agents, it would be desirable to have a reliable model to estimate the MDRR activity of compounds. Presented here is a naive Bayes classifier to categorize MDRR agents into active and inactive classes, which uses a universal, generic molecular-descriptor system.(1) The naive Bayes classifier was built from a 424 compound training set, selected from 609 druglike compounds in the publicly available "Klopman set". The model correctly predicted MDRR activities for 82.2% of 185 compounds in a testing set. The cumulative probabilities were proven useful for prioritizing the compounds for testing. The impact of attribute dependences on the performance of the classifier was examined. As an unsupervised learner with no tuning parameters, a naive Bayes classifier is capable of providing an objective comparison of the effectiveness of different molecular descriptors. The relative performance of the classifiers constructed from either an atom-type-based molecular descriptor or the long-range functional-class fingerprint descriptors FCFP_6 or FCFP_2 was compared. Employing an atom typing descriptor with the naive Bayes classification, it enables the interpretability of the resulting model, which offers extra information for the rational design of MDRR agents.
多药耐药性(MDR),即癌细胞同时对不同药物产生耐药性的能力,仍然是癌症化疗中一个尚未解决的挑战。使用多药耐药性逆转(MDRR)剂是克服这一问题的一种有前景的方法。对于此类药剂的设计和开发,拥有一个可靠的模型来评估化合物的MDRR活性将是很有必要的。本文介绍了一种朴素贝叶斯分类器,用于将MDRR剂分为活性和非活性两类,该分类器使用一种通用的、一般的分子描述符系统。(1)朴素贝叶斯分类器是基于一个424种化合物的训练集构建的,该训练集是从公开可用的“克洛普曼集”中的609种类药物化合物中挑选出来的。该模型正确预测了测试集中185种化合物中82.2%的MDRR活性。累积概率被证明有助于对测试化合物进行优先级排序。研究了属性依赖性对分类器性能的影响。作为一个没有调优参数的无监督学习器,朴素贝叶斯分类器能够对不同分子描述符的有效性进行客观比较。比较了由基于原子类型的分子描述符或远程功能类指纹描述符FCFP_6或FCFP_2构建的分类器的相对性能。将原子类型描述符与朴素贝叶斯分类相结合,能够使所得模型具有可解释性,为MDRR剂的合理设计提供额外信息。