Suppr超能文献

一种用于预测HERG易感性的准确且可解释的贝叶斯分类模型。

An accurate and interpretable bayesian classification model for prediction of HERG liability.

作者信息

Sun Hongmao

机构信息

Discovery Chemistry, Hoffmann-La Roche, Inc. 340 Kingsland Street, Nutley, NJ 07110, USA.

出版信息

ChemMedChem. 2006 Mar;1(3):315-22. doi: 10.1002/cmdc.200500047.

Abstract

Drug-induced QT interval prolongation has been identified as a critical side-effect of non-cardiovascular therapeutic agents and has resulted in the withdrawal of many drugs from the market. As almost all cases of drug-induced QT prolongation can be traced to the blockade of a voltage-dependent potassium ion channel encoded by the hERG (the human ether-à-go-go-related gene), early identification of potential hERG channel blockers will decrease the risk of cardiotoxicity-induced attritions in the later and more expensive development stage. Presented herein is a naive Bayes classifier to categorize hERG blockers into active and inactive classes, by using a universal, generic molecular descriptor system.1 The naive Bayes classifier was built from a training set containing 1979 corporate compounds, and exhibited an ROC accuracy of 0.87. The model was validated on an external test set of 66 drugs, of which 58 were correctly classified. The cumulative probabilities reflected the confidence of prediction and were proven useful for the identification of hERG blockers. Relative performance was compared for two classifiers constructed from either an atom-type-based molecular descriptor or the long range functional class fingerprint descriptor FCFP_6. The combination of an atom-typing descriptor and the naive Bayes classification technique enables the interpretation of the resulting model, which offers extra information for the design of compounds free of undesirable hERG activity.

摘要

药物诱导的QT间期延长已被确认为非心血管治疗药物的一种关键副作用,并且已导致许多药物退出市场。由于几乎所有药物诱导的QT延长病例都可追溯到由hERG(人类醚-à-去相关基因)编码的电压依赖性钾离子通道的阻断,因此早期识别潜在的hERG通道阻滞剂将降低在后期更昂贵的开发阶段因心脏毒性导致药物淘汰的风险。本文介绍了一种朴素贝叶斯分类器,通过使用通用的、通用的分子描述符系统将hERG阻滞剂分为活性和非活性类别。1朴素贝叶斯分类器是基于一个包含1979种公司化合物的训练集构建的,其ROC准确率为0.87。该模型在一个由66种药物组成的外部测试集上进行了验证,其中58种被正确分类。累积概率反映了预测的可信度,并被证明对识别hERG阻滞剂有用。比较了由基于原子类型的分子描述符或长程功能类指纹描述符FCFP_6构建的两种分类器的相对性能。原子类型描述符和朴素贝叶斯分类技术的结合能够解释所得模型,为设计无不良hERG活性的化合物提供了额外信息。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验