Wiederholt Carissa J, Patro Jennifer N, Jiang Yu Lin, Haraguchi Kazuhiro, Greenberg Marc M
Department of Chemistry, Johns Hopkins University 3400 North Charles Street, Baltimore, MD 21218, USA.
Nucleic Acids Res. 2005 Jun 8;33(10):3331-8. doi: 10.1093/nar/gki655. Print 2005.
Proper maintenance of the genome is of great importance. Consequently, damaged nucleotides are repaired through redundant pathways. We considered whether the genome is protected from formamidopyrimidine nucleosides (FapydA, FapydG) via a pathway distinct from the Escherichia coli guanine oxidation system. The formamidopyrimidines are produced in significant quantities in DNA as a result of oxidative stress and are efficiently excised by formamidopyrimidine DNA glycosylase. Previous reports suggest that the formamidopyrimidine nucleosides are substrates for endonucleases III and VIII, enzymes that are typically associated with pyrimidine lesion repair in E.coli. We investigated the possibility that Endo III and/or Endo VIII play a role in formamidopyrimidine nucleoside repair by examining FapydA and FapydG excision opposite all four native 2'-deoxyribonucleotides. Endo VIII excises both lesions more efficiently than does Endo III, but the enzymes exhibit similar selectivity with respect to their action on duplexes containing the formamidopyrimidines opposite native deoxyribonucleotides. FapydA is removed more rapidly than FapydG, and duplexes containing purine nucleotides opposite the lesions are superior substrates compared with those containing formamidopyrimidine-pyrimidine base pairs. This dependence upon opposing nucleotide indicates that Endo III and Endo VIII do not serve as back up enzymes to formamidopyrimidine DNA glycosylase in the repair of formamidopyrimidines. When considered in conjunction with cellular studies [J. O. Blaisdell, Z. Hatahet and S. S. Wallace (1999) J. Bacteriol., 181, 6396-6402], these results also suggest that Endo III and Endo VIII do not protect E.coli against possible mutations attributable to formamidopyrimidine lesions.
基因组的正确维护至关重要。因此,受损的核苷酸通过多种冗余途径进行修复。我们考虑基因组是否通过一条不同于大肠杆菌鸟嘌呤氧化系统的途径来抵御甲酰胺嘧啶核苷(FapydA、FapydG)。由于氧化应激,甲酰胺嘧啶在DNA中大量产生,并被甲酰胺嘧啶DNA糖基化酶有效切除。先前的报道表明,甲酰胺嘧啶核苷是内切酶III和VIII的底物,这两种酶通常与大肠杆菌中的嘧啶损伤修复相关。我们通过检测与所有四种天然2'-脱氧核糖核苷酸相对的FapydA和FapydG切除情况,研究了内切酶III和/或内切酶VIII在甲酰胺嘧啶核苷修复中发挥作用的可能性。内切酶VIII比内切酶III更有效地切除这两种损伤,但就它们对含有与天然脱氧核糖核苷酸相对的甲酰胺嘧啶的双链体的作用而言,这两种酶表现出相似的选择性。FapydA比FapydG去除得更快,与含有甲酰胺嘧啶-嘧啶碱基对的双链体相比,含有与损伤相对的嘌呤核苷酸的双链体是更好的底物。这种对相对核苷酸的依赖性表明,在内切酶III和内切酶VIII在甲酰胺嘧啶修复中不作为甲酰胺嘧啶DNA糖基化酶的备用酶。结合细胞研究[J. O. Blaisdell、Z. Hatahet和S. S. Wallace(1999)J. Bacteriol.,181,6396 - 640]考虑时,这些结果还表明,内切酶III和内切酶VIII不能保护大肠杆菌免受由甲酰胺嘧啶损伤引起的可能突变。