Suppr超能文献

Comparison of A+T-rich oligonucleotides with and without self-complementary sequence using ion-pair reversed-phase high-performance liquid chromatography/tandem electrospray ionization mass spectrometry.

作者信息

Song Renfang, Zhang Wenbing, Chen Huayong, Ma Huimin, Dong Yulian, Sheng Guoying, Zhou Zhen, Fu Jiamo

机构信息

State Key Laboratory of Organic Geochemistry, Guangzhou Research Center of Mass Spectrometry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China.

出版信息

Eur J Mass Spectrom (Chichester). 2005;11(1):83-91. doi: 10.1255/ejms.717.

Abstract

Both A+T-rich oligonucleotides with and without self-complementary sequences were analyzed using ion- pair reversed-phase liquid chromatography/electrospray ionization mass spectrometry (IP-RP-HPLC/ESI-MS) by tryethylammonium acetate (TEAA) and hexafluoroisopropanol (HFIP) buffer systems to study the characteristics of their retention behavior and electrospray ionization tandem mass spectrometry (ESI-MS/MS) response. The results indicated that the chain length had the same effect on the retention of A+T-rich oligonucleotides in both of TEAA and HFIP buffer systems but the sequence had a different impact on the retention in the two buffer systems. A+T- rich oligonucleotides with a self-complementary sequence were much shorter than those without in the TEAA buffer system whereas a slight difference was observed in the HFIP buffer system. Similar total ion current (TIC) intensity was observed both in oligonucleotides with or without self-complementary sequence. The opposite trend of a change in the TIC intensities with increasing chain length were observed in both the TEAA and HFIP buffer systems. A lower charge state was predominant in the TEAA buffer system whereas a higher charge state was mainly distributed in the HFIP buffer system. The oligonucleotides without self-complementary sequences had a higher charge state than those with self-complementary sequences. A- and T- are more esily formed at a higher charge state whereas the sequence fragments will be formed more easily at a lower charge state in both A+T-rich oligonucleotides with and without self-complementary sequences.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验