Ge Xijin, Yamamoto Shogo, Tsutsumi Shuichi, Midorikawa Yutaka, Ihara Sigeo, Wang San Ming, Aburatani Hiroyuki
Genome Science Division, Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan.
Genomics. 2005 Aug;86(2):127-41. doi: 10.1016/j.ygeno.2005.04.008.
A critical and difficult part of studying cancer with DNA microarrays is data interpretation. Besides the need for data analysis algorithms, integration of additional information about genes might be useful. We performed genome-wide expression profiling of 36 types of normal human tissues and identified 2503 tissue-specific genes. We then systematically studied the expression of these genes in cancers by reanalyzing a large collection of published DNA microarray datasets. We observed that the expression level of liver-specific genes in hepatocellular carcinoma (HCC) correlates with the clinically defined degree of tumor differentiation. Through unsupervised clustering of tissue-specific genes differentially expressed in tumors, we extracted expression patterns that are characteristic of individual cell types, uncovering differences in cell lineage among tumor subtypes. We were able to detect the expression signature of hepatocytes in HCC, neuron cells in medulloblastoma, glia cells in glioma, basal and luminal epithelial cells in breast tumors, and various cell types in lung cancer samples. We also demonstrated that tissue-specific expression signatures are useful in locating the origin of metastatic tumors. Our study shows that integration of each gene's breadth of expression (BOE) in normal tissues is important for biological interpretation of the expression profiles of cancers in terms of tumor differentiation, cell lineage, and metastasis.
利用DNA微阵列研究癌症,关键且困难的部分在于数据解读。除了需要数据分析算法外,整合有关基因的其他信息可能会有所帮助。我们对36种正常人体组织进行了全基因组表达谱分析,鉴定出2503个组织特异性基因。然后,我们通过重新分析大量已发表的DNA微阵列数据集,系统地研究了这些基因在癌症中的表达情况。我们观察到,肝细胞癌(HCC)中肝脏特异性基因的表达水平与临床定义的肿瘤分化程度相关。通过对肿瘤中差异表达的组织特异性基因进行无监督聚类,我们提取了个体细胞类型特有的表达模式,揭示了肿瘤亚型之间细胞谱系的差异。我们能够检测到HCC中肝细胞的表达特征、髓母细胞瘤中神经元细胞的表达特征、胶质瘤中胶质细胞的表达特征、乳腺肿瘤中基底和腔上皮细胞的表达特征以及肺癌样本中各种细胞类型的表达特征。我们还证明,组织特异性表达特征有助于确定转移性肿瘤的起源。我们的研究表明,整合每个基因在正常组织中的表达广度(BOE)对于从肿瘤分化程度、细胞谱系和转移等方面对癌症表达谱进行生物学解读非常重要。