Boyd Heather A, Flanders W Dana, Addiss David G, Waller Lance A
Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA.
Epidemiology. 2005 Jul;16(4):532-41. doi: 10.1097/01.ede.0000164558.73773.9c.
Analytic methods commonly used in epidemiology do not account for spatial correlation between observations. In regression analyses, this omission can bias parameter estimates and yield incorrect standard error estimates. We present a Bayesian hierarchical model (BHM) approach that accounts for spatial correlation, and illustrate its strengths and weaknesses by applying this modeling approach to data on Wuchereria bancrofti infection in Haiti.
A program to eliminate lymphatic filariasis in Haiti assessed prevalence of W. bancrofti infection in 57 schools across Leogane Commune. We analyzed the spatial pattern in the prevalence data using semi-variograms and correlograms. We then modeled the data using (1) standard logistic regression (GLM); (2) non-Bayesian logistic generalized linear mixed models (GLMMs) with school-specific nonspatial random effects; (3) BHMs with school-specific nonspatial random effects; and (4) BHMs with spatial random effects.
An exponential semi-variogram with an effective range of 2.15 km best fit the data. GLMM and nonspatial BHM point estimates were comparable and also were generally similar with the marginal GLM point estimates. In contrast, compared with the nonspatial mixed model results, spatial BHM point estimates were markedly attenuated.
The clear spatial pattern evident in the Haitian W. bancrofti prevalence data and the observation that point estimates and standard errors differed depending on the modeling approach indicate that it is important to account for residual spatial correlation in analyses of W. bancrofti infection data. Bayesian hierarchical models provide a flexible, readily implementable approach to modeling spatially correlated data. However, our results also illustrate that spatial smoothing must be applied with care.
流行病学中常用的分析方法未考虑观测值之间的空间相关性。在回归分析中,这种遗漏会使参数估计产生偏差,并导致标准误差估计不正确。我们提出一种考虑空间相关性的贝叶斯层次模型(BHM)方法,并通过将此建模方法应用于海地班氏吴策线虫感染数据来说明其优缺点。
海地一项消除淋巴丝虫病的计划评估了莱奥甘公社57所学校中班氏吴策线虫感染的患病率。我们使用半变异函数图和相关图分析了患病率数据的空间模式。然后我们使用以下方法对数据进行建模:(1)标准逻辑回归(GLM);(2)具有学校特定非空间随机效应的非贝叶斯逻辑广义线性混合模型(GLMMs);(3)具有学校特定非空间随机效应的BHM;以及(4)具有空间随机效应的BHM。
有效范围为2.15千米的指数半变异函数图最符合数据。GLMM和非空间BHM点估计值具有可比性,并且通常也与边际GLM点估计值相似。相比之下,与非空间混合模型结果相比,空间BHM点估计值明显减弱。
海地班氏吴策线虫患病率数据中明显的空间模式,以及点估计值和标准误差因建模方法而异的观察结果表明,在分析班氏吴策线虫感染数据时考虑残余空间相关性很重要。贝叶斯层次模型为对空间相关数据进行建模提供了一种灵活、易于实施的方法。然而,我们的结果也表明,必须谨慎应用空间平滑法。