Beynon Malcolm, Kitchener Martin
Cardiff Business School, Cardiff University, Colum Drive, Cardiff CF10 3EU, Wales, UK.
Health Care Manag Sci. 2005 May;8(2):157-66. doi: 10.1007/s10729-005-0398-2.
The use of attribute sets to rank units of health provision (e.g., states, organizations) against policy goals is an essential task within decision-making and analysis. This paper elucidates and compares two techniques, SMARTER (Simple Multiattribute Rating Technique Exploiting Ranks) and CaRBS (Classification and Ranking Belief Simplex), within an expositional ranking of US states' long-term care (LTC) systems against the policy goal of providing a balance between (traditionally dominant) institutional care, and alternative home and community-based services (HCBS). While the (more established) SMARTER technique is used primarily for comparative purposes, greater emphasis is placed on elucidating CaRBS which is based on the Dempster-Shafer theory of evidence. It is shown that CaRBS offers four appealing features for health policy analysis: (1) the capacity to rank using either of two confidence measures (DST-related belief and plausibility values), (2) a systematic approach to managing missing data, (3) the production of stable rankings, and (4) the simplex plot method of data representation. In addition to discussing the LTC policy implications of the study findings, the issues of rank order stability and the management of missing data are discussed with respect to the two techniques employed.
使用属性集根据政策目标对卫生服务单位(如州、组织)进行排名是决策和分析中的一项重要任务。本文在美国各州长期护理(LTC)系统针对在(传统上占主导地位的)机构护理与替代性家庭和社区服务(HCBS)之间实现平衡这一政策目标的说明性排名中,阐明并比较了两种技术,即SMARTER(利用排名的简单多属性评级技术)和CaRBS(分类和排名信念单纯形)。虽然(更成熟的)SMARTER技术主要用于比较目的,但本文更着重于阐明基于邓普斯特 - 谢弗证据理论的CaRBS。结果表明,CaRBS在卫生政策分析方面具有四个吸引人的特点:(1)能够使用两种置信度度量(与DST相关的信念和似然值)中的任何一种进行排名,(2)一种管理缺失数据的系统方法,(3)产生稳定的排名,以及(4)数据表示的单纯形图方法。除了讨论研究结果对长期护理政策的影响外,还针对所采用的两种技术讨论了排名顺序稳定性和缺失数据管理的问题。