Suppr超能文献

在采用独立成分分析的神经受体成像中省略连续动脉血样采集

Omission of serial arterial blood sampling in neuroreceptor imaging with independent component analysis.

作者信息

Naganawa Mika, Kimura Yuichi, Nariai Tadashi, Ishii Kenji, Oda Keiichi, Manabe Yoshitsugu, Chihara Kunihiro, Ishiwata Kiichi

机构信息

Department of Information Processing, Graduate School of Information Science, Nara Institute of Science and Technology, Nara, Japan.

出版信息

Neuroimage. 2005 Jul 1;26(3):885-90. doi: 10.1016/j.neuroimage.2005.02.025. Epub 2005 Apr 1.

Abstract

We have previously proposed a statistical method for extracting a plasma time-activity curve (pTAC) from dynamic PET images, named EPICA, for kinetic analysis of cerebral glucose metabolism. We assumed that the dynamic PET images consist of a blood-related component and a tissue-related component which are spatially independent in a statistical sense. The aim of this study is to investigate the utility of EPICA in imaging total distribution volume (DVt) and binding potential (BP) with Logan plots in a neuroreceptor mapping study. We applied EPICA to dynamic [(11)C]MPDX PET images in 25 subjects, including healthy subjects and patients with brain diseases, and validated the estimated pTACs. [11C]MPDX is a newly developed radiopharmaceutical for mapping cerebral adenosine A1 receptors. EPICA successfully extracted pTAC for all 25 subjects. Parametric images of DVts were estimated by applying Logan plots with the EPICA-estimated pTAC and then used to define a reference region. The BPs estimated using EPICA were evaluated in 18 subjects by ROI-based comparison with those obtained using the nonlinear least squares method (NLSM). The calculated BPs were identical to the estimates using NLSM in each subject. We conclude that EPICA is a promising technique that generates parametric images of DVt and BP in neuroreceptor mapping without requiring arterial blood sampling.

摘要

我们之前提出了一种从动态PET图像中提取血浆时间-活性曲线(pTAC)的统计方法,名为EPICA,用于脑葡萄糖代谢的动力学分析。我们假设动态PET图像由血液相关成分和组织相关成分组成,它们在统计意义上在空间上是独立的。本研究的目的是在神经受体图谱研究中,研究EPICA在使用Logan图成像总分布容积(DVt)和结合潜能(BP)方面的效用。我们将EPICA应用于25名受试者的动态[(11)C]MPDX PET图像,包括健康受试者和脑部疾病患者,并验证了估计的pTAC。[11C]MPDX是一种新开发的用于绘制脑腺苷A1受体图谱的放射性药物。EPICA成功为所有25名受试者提取了pTAC。通过将Logan图应用于EPICA估计的pTAC来估计DVt的参数图像,然后用于定义参考区域。通过基于感兴趣区域(ROI)的比较,在18名受试者中评估了使用EPICA估计的BP与使用非线性最小二乘法(NLSM)获得的BP。计算得到的BP与每个受试者中使用NLSM的估计值相同。我们得出结论,EPICA是一种有前景的技术,可在神经受体图谱中生成DVt和BP的参数图像,而无需动脉血采样。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验