Suppr超能文献

用于动态脑正电子发射断层扫描中组织分类的聚类启动因子分析应用

Clustering-initiated factor analysis application for tissue classification in dynamic brain positron emission tomography.

作者信息

Boutchko Rostyslav, Mitra Debasis, Baker Suzanne L, Jagust William J, Gullberg Grant T

机构信息

Lawrence Berkeley National Lab, Berkeley, California, USA.

Department of Computer Science, Florida Institute of Technology, Melbourne, Florida, USA.

出版信息

J Cereb Blood Flow Metab. 2015 Jul;35(7):1104-11. doi: 10.1038/jcbfm.2015.69. Epub 2015 Apr 22.

Abstract

The goal is to quantify the fraction of tissues that exhibit specific tracer binding in dynamic brain positron emission tomography (PET). It is achieved using a new method of dynamic image processing: clustering-initiated factor analysis (CIFA). Standard processing of such data relies on region of interest analysis and approximate models of the tracer kinetics and of tissue properties, which can degrade accuracy and reproducibility of the analysis. Clustering-initiated factor analysis allows accurate determination of the time-activity curves and spatial distributions for tissues that exhibit significant radiotracer concentration at any stage of the emission scan, including the arterial input function. We used this approach in the analysis of PET images obtained using (11)C-Pittsburgh Compound B in which specific binding reflects the presence of β-amyloid. The fraction of the specific binding tissues determined using our approach correlated with that computed using the Logan graphical analysis. We believe that CIFA can be an accurate and convenient tool for measuring specific binding tissue concentration and for analyzing tracer kinetics from dynamic images for a variety of PET tracers. As an illustration, we show that four-factor CIFA allows extraction of two blood curves and the corresponding distributions of arterial and venous blood from PET images even with a coarse temporal resolution.

摘要

目标是在动态脑正电子发射断层扫描(PET)中量化表现出特定示踪剂结合的组织部分。这是通过一种新的动态图像处理方法实现的:聚类启动因子分析(CIFA)。此类数据的标准处理依赖于感兴趣区域分析以及示踪剂动力学和组织特性的近似模型,这可能会降低分析的准确性和可重复性。聚类启动因子分析能够准确确定在发射扫描的任何阶段表现出显著放射性示踪剂浓度的组织的时间 - 活度曲线和空间分布,包括动脉输入函数。我们将这种方法用于分析使用(11)C - 匹兹堡化合物B获得的PET图像,其中特异性结合反映了β - 淀粉样蛋白的存在。使用我们的方法确定的特异性结合组织部分与使用洛根图形分析计算的结果相关。我们认为CIFA可以成为一种准确且便捷的工具,用于测量特异性结合组织浓度以及分析来自各种PET示踪剂动态图像的示踪剂动力学。作为示例,我们表明四因子CIFA即使在时间分辨率较低的情况下也能从PET图像中提取两条血液曲线以及动脉血和静脉血的相应分布。

相似文献

5
Imaging beta-amyloid burden in aging and dementia.成像衰老和痴呆症中的β-淀粉样蛋白负荷。
Neurology. 2008 Apr 29;70(18):1649; author reply 1650. doi: 10.1212/01.wnl.0000318046.06992.24.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验